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Abstract 

Understanding the mechanisms of T-cell antigen recognition that underpin adaptive immune 

responses is critical for the development of vaccines, immunotherapies, and treatments against 

autoimmune diseases. Despite extensive research efforts, the accurate identification of T cell 

receptor (TCR)-antigen binding pairs remains a significant challenge due to the vast diversity and 

cross-reactivity of TCRs. Here, we propose a deep-learning framework termed Epitope-anchored 

Contrastive Transfer Learning (EPACT) tailored to paired human CD8+ TCRs from single-cell 

sequencing data. Harnessing the pre-trained representations and the contrastive co-embedding space, 

EPACT demonstrates state-of-the-art model generalizability in predicting TCR binding specificity 

for unseen epitopes and distinct TCR repertoires, offering potential values for practical outcomes in 

real-world scenarios. The contrastive learning paradigm achieves highly precise predictions for 
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immunodominant epitopes and facilitates interpretable analysis of epitope-specific T cells. The 

TCR binding strength predicted by EPACT aligns well with the surge in spike-specific immune 

responses targeting SARS-CoV-2 epitopes after vaccination. We further fine-tune EPACT on TCR-

epitope structural data to decipher the residue-level interactions involved in T-cell antigen 

recognition. EPACT not only exhibits superior capabilities in quantifying inter-chain distance 

matrices and identifying contact residue pairs but also corroborates the presence of molecular 

mimicry across multiple tumor-associated antigens. Together, EPACT can serve as a useful AI 

approach with significant potential in practical applications and contribute toward the development 

of TCR-based diagnostics and immunotherapies. 

 

Introduction 

CD8+ T cells play a central role in the immune system against viral infections, autoimmune diseases, 

and cancers that differentiated cytotoxic T lymphocytes (CTLs) can kill target cells1-5. TCRs 

composed of multiple protein chains can trigger the activation of CD8+ T cells by recognizing 

antigens presented by major histocompatibility complex (MHC) class I molecules6, 7. The accurate 

and high-throughput identification of TCR sequences that bind to specific antigens is increasingly 

critical for explorations of the mechanisms of T cell immune responses and to underpin the 

development of effective TCR-based immunotherapies8. In addition, binding specificities of TCR 

repertoires can provide an alternative to cancer diagnostic markers9 and to monitor the effectiveness 

of tumor treatment or vaccines10, 11.  

Recent advances in single-cell sequencing techniques enable the pairing of TCRα and TCRβ 

transcripts through fluorescence-activated cell sorting (FACS) isolation or emulsion-based 

methods12. Despite the lower throughput than bulk TCR sequencing methods, capturing paired 

TCRαβ information is bound to promote the characterization of TCR diversity and function. 

Various experimental approaches, such as tetramer-associated TCR sequencing13 (TetTCR-seq) and 

microfluidic antigen-TCR engagement sequencing14 (MATE-seq), were developed for the mapping 

of paired TCRαβ sequences to antigen recognition specificity at the single-cell level. However, 

these powerful experimental methods have several shortcomings, including high cost, technical 

complexity, and limited epitope coverage12. On the other hand, TCR cross-reactivity15 that one TCR 

can bind to multiple peptide-MHC (pMHC) complexes presents therapeutic potentials to devise T 

cells with cross-reactive TCRs targeting various tumor antigens16 yet can provoke risky 

autoimmune responses when T cells respond to self-antigens17. Molecular mimicry between 

activated peptides and the plasticity of complementarity-determining regions (CDRs) can jointly 
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contribute to TCR cross-reactivity18, 19. Still, the availability of the TCR-pMHC complex crystal 

structures is far from underpinning systematic investigations of the intricate mechanism. Addressing 

current challenges in TCR-antigen recognition20, it is necessary to exploit state-of-the-art AI 

systems to predict binding specificity and interaction conformation between TCR and pMHC 

complex. 

A multitude of computational approaches pinpoint a promising direction to tackle the issue of TCR-

antigen binding specificity via cutting-edge deep learning frameworks21. Existing methods comprise 

three major categories: (1) TCR representation models (GLIPH222, DeepTCR23, TCRdist324, TCR-

BERT25); (2) peptide-specific TCR binding models (TCRex26, TCRGP27, NetTCR-2.028, TCRAI29, 

MixTCRpred30); (3) pan-specific TCR binding models (ERGO-II31, TITAN32, pMTnet33, TEIM-

Seq34, PanPep35, STAPLER36, TAPIR37, TULIP-TCR38, NetTCR-2.239, pMTnet-omni40), but most 

of these works only consider the CDR3 loop of the TCRβ chain. Despite the dominant role of 

CDR3β in antigen recognition and TCR diversity, the TCRα chains also contact the pMHC 

complexes and contribute to the interaction, such that pairing inputs of TCRαβ sequences should 

provide a more comprehensive view of TCR binding specificity41. Besides, pan-specific models that 

embed TCR and pMHC sequences simultaneously are designed to generalize to neoantigens or 

other less common peptides. However, few analyses include evaluation under zero-shot settings35, 

resulting in the over-optimistic performance of state-of-the-art predictors. Model capacities, 

especially those handling paired TCRαβ sequences, are still far from satisfactory. Moreover, the 

lack of high-quality negative data and false-negative pairs from biased data generation also hinders 

AI applications in real-world scenarios42. To decipher the underlying binding mechanisms from a 

structural perspective, TEIM-Res first harnessed deep learning techniques to predict the pairwise 

residue interactions between CDR3β and epitope sequence34. Nevertheless, other CDR loops, such 

as the CDR1 and CDR3 of the TCR alpha chain, are also involved in the structural interplay 

between TCR and epitope43, and no existing computational methods concern the in-depth analysis 

of TCR cross-reactivity. 

Here, we propose a deep-learning framework, epitope-anchored contrastive transfer learning 

(EPACT), for paired CD8+ T cell receptor-antigen recognition. Leveraging the contextualized 

representations from the pre-trained language model25, 36 and the prior pMHC binding/presentation 

embeddings33, 40, EPACT achieves robust adaptivity to novel TCR-pMHC pairs through transfer 

learning. Meanwhile, supervised contrastive learning adopting epitope/pMHC anchors preserves the 

prediction specificity for a particular epitope and provides an interpretable co-embedding space for 

TCRs and cognate pMHC targets44. We evaluate the model generalizability under two scenarios for 
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binding specificity prediction: (1) predicting binding TCR for unseen epitopes and (2) adapting to 

distinct TCR populations. In addition to state-of-the-art performance in distinguishing pairing TCRs 

of given pMHC complex from decoys, EPACT also exhibits outstanding capacity in illuminating 

the residue-level interactions within the CDR-epitope interface. We further apply EPACT to SARS-

CoV-2 epitope-specific TCR clonotypes under diverse infection and vaccination conditions45 as 

well as structure-driven TCR cross-reactivity instances in autoimmune diseases46 and cancer 

immunotherapies47. Our analyses demonstrate the application potential of EPACT in accelerating 

the development of TCR-based diagnostics and immunotherapies for infectious diseases and 

cancers. 

 

Results 

Overview of the EPACT methodology 

We employed a divide-and-conquer paradigm to develop the architecture of EPACT, concentrating 

on the interaction between paired TCRαβ chains from CD8+ T cells and the cognate peptide-MHC 

targets (Fig. 1a,b). The detailed model architecture is presented in Supplementary Fig. 1. 

Specifically, we first pre-trained separate protein language models48 that reconstructed masked 

amino acids and Atchley factors49 for TCR or peptide sequences. Transformer-based language 

models harnessed the vast collection of immune epitopes and diverse TCR repertoires, thus yielding 

contextualized embeddings for CD8+ T cell epitopes and receptors. We employed residual 

convolutional blocks50 to encode the evolutionary and biophysical properties of MHC alleles, as 

MHC class I molecules present the epitopes to TCR on the cell surface51. We then combined the 

MHC features with prior peptide embeddings to learn the fused representation of the pMHC 

complex via a dual cross-attention (DCA) module. After incorporating MHC information, a 

language modeling head was inherited from the peptide language model to predict masked amino 

acids along the peptide sequences. We trained a peptide-MHC binding model on binding affinity 

data collected from NetMHCpan-4.152. The predicted normalized IC50 values of test pMHC pairs 

were highly correlated with the experimental measures across multiple HLA gene subtypes (Fig. 1e 

and Extended Data Fig. 1a), with an overall Pearson correlation coefficient of 0.822. We also 

assessed an epitope presentation model using the independent test set of BigMHC53. Our 

intermediate model significantly improved the prediction of MHC class I eluted ligands (Fig. 1f and 

Extended Data Fig. 1b-d), achieving a mean area under the precision-recall curve (AUPR) of 

0.901 when stratifying by MHC alleles (BigMHC AUPR: 0.878, NetMHCpan-4.1 AUPR: 0.831). 
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Leveraging the robust representations derived from powerful TCR and pMHC pre-trained models, 

EPACT generalized to predict TCR antigen recognition tasks via transfer learning (Fig. 1c). We 

prepared a pool of epitope-specific TCRs in the training data and then devised a contrastive learning 

module to connect the TCR and pMHC subnetworks (Fig. 1d): 1) For each TCR-pMHC pair with 

known binding specificity, “non-binding” TCRs were randomly sampled from the TCR pool; 2) 

TCR and pMHC pre-trained embeddings were processed by paralleled self-attention layers and 

convolutional blocks with dropout; 3) Classification embeddings representing the CLS token of 

TCR and pMHC were subsequently projected into a co-embedding space; 4) A supervised 

contrastive loss54 was calculated to shorten the cosine distance between the pMHC anchor and 

binding TCR compared with non-binding ones. The classification embeddings were also 

concatenated to output a pan-epitope binding score ranging from 0 to 1 by a multi-layer perceptron 

(MLP). In addition to predicting TCR-pMHC binding specificity, we also fine-tuned EPACT to 

characterize the residue-residue interactions between CDR loops and the epitope. The outer product 

of the residue-level embeddings of TCR and epitope sequences was further fed in a two-

dimensional convolutional layer to simultaneously predict distance matrix and contact residue pairs. 

Therefore, EPACT could identify the binding hotpots, indicating the interaction conformation of the 

TCR-pMHC complex. 

 

EPACT achieves state-of-the-art performance for predicting TCR-pMHC binding specificity 

We adopted two evaluation settings to mimic the real-world applications of the TCR-pMHC 

binding specificity model. We clustered the training epitopes according to the pairwise sequence 

similarity and allocated the corresponding TCR-pMHC pairs of each cluster in different training 

folds. In this way, we conducted a five-fold cross-validation to assess the zero-shot predictions in 

which the model was expected to adjust the binding preferences of unseen peptides. It could partly 

reflect the model’s capacity to identify neoantigen-specific TCR clones. Genetic rearrangement 

during T cell development results in diverse TCR populations of different individuals, while antigen 

exposure and environmental factors also contribute to variations in T cell repertoires55. We selected 

the unique TCR-pMHC pairs in the VDJdb database56 to build the test dataset and generated 

mismatched TCRs in the subset. We took the average of the predicted binding scores derived from 

five training folds for benchmarking. Despite the confounding factors of experimental techniques 

and collection criteria, it was an effective way to examine model generalizability to distinct TCR 

populations.  
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The hypervariable CDR3 loops play a crucial role in antigen recognition7, so we only considered 

CDR3αβ sequences from the paired TCR chains at first. EPACT substantially enhanced model 

performance on unseen epitopes with paired CDR3αβ and pMHC inputs compared to other deep-

learning methods (Fig. 1g,h). While other methods (ERGO-II31, NetTCR-2.028, and TULIP-TCR38) 

struggled with surpassing random predictions, EPACT obtained an average AUC of 0.609 and 

AUPR of 0.227 across five folds. We also compared the AUCs and AUPRs when stratifying by 

epitopes in cross-validation. EPACT demonstrated state-of-the-art performance for the majority of 

epitopes (Supplementary Fig. 2) in which the zero-shot AUCs and AUPRs excelled those derived 

from NetTCR-2.0 predictions for 85.0% and 80.4% of the epitope targets. We then assessed the 

model generalizability on VDJdb unique TCR-pMHC pairs (Fig. 1i,j). All candidate models 

outperformed unseen epitope predictions except TULIP-TCR, an unsupervised method that 

transferred little knowledge to a distinct TCR population. EPACT reached a median AUC of 0.699 

[95% confidence interval (CI), 0.682 to 0.717] and a median AUPR of 0.430 (CI, 0.402 to 0.459) 

by 1000 bootstrap iterations, while the second best method in our experiment, NetTCR-2.0, 

obtained a median AUC of 0.643 (CI, 0.624 to 0.661) and a median AUPR of 0.356 (CI, 0.328 to 

0.382).  

The CDR1 and CDR2 loops encoded by human TRAV/TRBV genes mainly contact the surface of 

HLA molecules57. Nevertheless, incorporating CDR1 and CDR2 sequences of TCRαβ chains 

enables the enhanced prediction performance for TCR binding specificity due to additional co-

evolutionary information58. Furthermore, structural evidence revealed that CDR1α sequences in 

many TCR-pMHC complexes participate in the interactions with part of the peptide residues43, 

while CDR3β might even shift to avoid interactions with the peptide antigen under unconventional 

docking59. Therefore, we determined to extract both CDR1 and CDR2 loops from IMGT annotated 

V-genes60 and integrated them into the large language-based TCR model. Several existing methods 

also provided models accommodating the inputs of all six CDR loops (NetTCR-2.239 and 

MixTCRpred30), CDR3 sequences plus categorical V- and J-genes (ERGO-II31), or full-length 

TCRαβ sequences (STAPLER36). 

We conducted cross-validation and independent testing via the same setting on TCR-pMHC pairs 

with paired CDR3αβ sequences and annotated V-, J-genes. We also trained a model solely on 

CDR3αβ to assess possible improvements brought by adding CDR1 and CDR2 sequences. The 

zero-shot validation performance on unseen peptides showed a minimal difference between the 

CDR3αβ and TCRαβ model (average AUC, 0.597 vs. 0.595; average AUPR, 0.218 vs. 0.224, Fig. 

2a). In contrast, the shared V-genes across diverse TCR populations might contribute to 
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performance improvements of the TCRαβ model (Fig. 2a,b) as the sequence diversity in germline-

encoded CDR1 and CDR2 loops is much lower than CDR3. The median AUC by 1000 bootstrap 

iterations increased from 0.665 (CI, 0.647 to 0.682) to 0.697 (CI, 0.678 to 0.714), and the median 

AUPR rose from 0.381 (CI, 0.354 to 0.406) to 0.444 (CI, 0.416 to 0.471). EPACT also 

outperformed external methods, including ERGO-II, NetTCR-2.2, and STAPLER (Extended Data 

Fig. 2a-d). The zero-shot AUCs and AUPRs of EPACT transcended those derived from NetTCR-

2.2 predictions for 82.1% and 74.9% of the epitope targets (Supplementary Fig. 2). Although the 

overall prediction metrics of NetTCR-2.2 approached EPACT (median AUPR, 0.425 vs. 0.444), 

EPACT exhibited a higher average AUPR (0.502 vs. 0.461) by stratifying the test epitopes. We 

analyzed the AUPRs for the epitopes with over ten binding TCRs in the test dataset. EPACT was 

the best predictor for 7 in 24 epitope targets (Fig. 2c), including the Melan-A epitope 

EAAGIGILTV (AUPR, 0.948), Influenza M peptide GILGFVFTL (AUPR, 0.918), and SARS-

CoV-2 nucleocapsid-derived peptide SPRWYFYYL (AUPR, 0.623). To validate the model 

robustness on various epitope targets, we categorized the epitopes in the validation set into groups 

of different sequence lengths and Levenshtein distances to training ones. Consequently, we 

observed EPACT’s reliability and superiority across all categories (Supplementary Fig. 3). We 

also conducted an ablation study in regards to EPACT's essential modules, including the pre-

training process and contrastive loss (Supplementary Table 1). The presented benchmarking 

results illustrate that EPACT exhibited an excellent capability of predicting CD8+ TCR-pMHC 

recognition for unseen peptides and distinct TCR populations. 

 

EPACT enables interpretable analysis of epitope-specific TCRs 

Accurate identification of TCRs of particular tumor-associated or viral epitopes can help expedite 

vaccine development and T cell-based immunotherapies61-63. Previous unsupervised clustering 

methods, such as GLIPH222 and TCRdist324, mapped the input single or paired TCRs to unique 

clusters based on the sequence features. TCR specificities were assigned based on the resemblance 

to TCRs with known binding targets. However, these epitope-specific TCRs recognizing common 

pMHC complexes might not share high sequence similarity, especially the hypervariable CDR3 

loops, partly due to the inherent diversity of TCR repertoires and TCR degeneracy64 (i.e., one TCR 

can bind to multiple antigen peptides). These present challenges for inferring the epitope-specific 

TCR clones among a TCR repertoire. 
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Contrastive learning module in EPACT mapped pMHC anchors and TCRs into an interpretable co-

embedding space. Thus, we defined epitope-specific TCRs based on their cosine distances to the 

corresponding pMHC anchors. We re-trained an EPACT model using the complete TCRαβ-pMHC 

recognition dataset and derived the projections of all available pMHCs. We assumed that epitope-

specific TCRs would be organized into clusters around the centroid representing the epitope targets. 

To illustrate the effectiveness of our EPACT model for predicting epitope-specific TCRs in the co-

embedding space, we chose 16 SARS-CoV-2 epitopes and antigen-presented MHC alleles for 

exemplification. We constructed the SARS-CoV-2 epitope-specific TCR clusters using an 

interpretable approach. We assigned the candidate TCRs to the nearest pMHC anchors and set the 

maximum cosine distance from the anchor to 0.4 for high specificity in each cluster. We employed 

the UMAP algorithm to reduce the dimension of TCR projections65, resulting in distinct TCR 

clusters in the two-dimensional space (Fig. 2d). Interestingly, the predicted epitope-specific TCRs 

for different epitope targets presented by HLA-A*01:01, HLA-B*15:01, and HLA-B*44:02 were 

found to be in close proximity in the UMAP space. This probably implies the impact on TCR-

pMHC recognition from the HLA genotypes66. Next, we inspected the amino acid preferences of 

CDR3αβ sequences responding to five 9-mer spike protein epitopes (LTDEMIAQY, YLQTRPFLL, 

NYNYLYRLF, QYIKWPWYI, and NQKLIKNQF) presented by various HLA molecules (Fig. 2e 

and Supplementary Fig. 4). The core regions of the spike-epitope-specific CDR3αβ loops that 

primarily contacted the epitope were highly diverse despite the conserved motifs at N- and C-

terminus67. Nevertheless, polar amino acids, such as Glycine(G), Asparagine(N), Serine(S), and 

Threonine(T) were more likely to occur at the core positions of CDR3αβ sequences. To confirm the 

representativeness of the epitope-specific clusters, we compared the distribution of the spike and 

non-spike epitope targets with their known binding TCRs (Fig. 2f and Supplementary Fig. 5). As 

can be seen, the UMAP projections of TCRs with experimental specificity also gathered around the 

cognate pMHC targets and appeared to form cluster shapes similar to the predicted ones. 

 

EPACT aligns well with the T cell responses to SARS-CoV-2 infection and vaccination 

We further investigated the application potential of EPACT to clinical cohorts through a 

longitudinal study45. Minervina et al. profiled the SARS-Cov-2 responsive CD8+ T cells from 

samples that underwent distinct antigen exposure through scRNA-seq and scTCR-seq. We collected 

4,471 unique TCR clonotypes with paired CDR3αβ sequences, V-, J-gene annotations, and antigen 

specificity for 16 epitope targets inferred by DNA barcoded pMHC dextramer. We removed the 

overlapped TCRs in the training data and randomly chose non-responsive TCRs from the combined 
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repertoire of healthy human samples. Thus, we constructed an external TCR-pMHC recognition 

dataset comprising 3,540 unseen SARS-CoV-2 responsive TCR clonotypes and five times non-

binding TCRs for fair benchmarking. 

We evaluated the model generalizability of STAPLER36, NetTCR-2.239, EPACT, and 

MixTCRpred30 to unseen TCR clones, respectively. Model outputs of MixTCRpred were assembled 

from 14 peptide-specific predictors. To validate the necessity of including CDR1 and CDR2 

features, we also assessed the performance of EPACT trained on CDR3αβ data and NetTCR-2.028. 

EPACT substantially enhanced the model capacity (Fig. 3a,b), achieving a median AUPR of 0.509 

(CI, 0.494 to 0.524) across all SARS-CoV-2 epitopes by bootstrapping. Meanwhile, the second-best 

method, NetTCR-2.2, achieved a median AUPR of 0.455 (CI, 0.439 to 0.472). The median AUPR 

of EPACT (0.425, CI, 0.410 to 0.442) significantly decreased when solely using CDR3αβ features 

due to the loss of underlying co-evolutionary and biophysical information from CDR1 and CDR2 

loops. We also examined the model performance for each SARS-CoV-2 epitope (Extended Data 

Fig. 3a). EPACT demonstrated a nearly equivalent predictor as MixTCRpred, an ensemble of 

several peptide-specific models (average AUPR, 0.382 vs. 0.398). Given abundant training data, the 

contrastive learning paradigm empowered EPACT with high specificity44 so that it even 

outperformed MixTCRpred in predicting TCRs binding to two immunodominant SARS-CoV-2 

epitopes (TTDPSFLGRY AUPR, 0.666 vs. 0.605 and YLQPRTFLL AUPR, 0.765 vs. 0.753). In 

addition, EPACT delivered remarkable advantages over other pan-specific models, resulting in 

higher AUPRs for 12 in 14 epitope targets compared to NetTCR-2.2 (Fig. 3c). 

We next applied EPACT to the entire SARS-CoV-2 epitope-specific CD8+ T cell repertoires in the 

cohort to explore whether EPACT could detect the dynamics of T cell binding specificity and other 

phenotypes under a real-world scenario (Fig. 3d). We predicted antigen-specific clusters in the TCR 

repertoire by calculating the cosines distances between TCRs and pMHC anchors in the co-

embedding space (Extended Data Fig. 3b,c). To determine the relative binding strength to the 

epitope target, we generated the background distribution of binding score by sampling a large 

collection of TCRs and subsequently a rank-percentile measurement. The predicted rank reflected 

the binding strength of query TCR relative to the background TCRs. We then monitored the 

variation in binding rank and TCR clonal expansion upon diverse SARS-CoV-2 antigen exposure 

and vaccination. 

We validated the effectiveness of predicted antigen-specific TCR clusters by comparing the 

abundance within and outside the cluster of TCRs with experimental specificity. We calculated the 

enrichment ratios of various SARS-CoV-2 epitope-specific TCRs across 16 clusters (Fig. 3e). As a 
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result, the antigen-specific clusters derived from EPACT predictions were consistent with 

experimental specificity of the majority of the epitope targets45. For instance, five groups of spike-

epitope-specific TCRs were highly enriched in the corresponding clusters; the enrichment ratios 

were 7.25, 73.8, 35.3, 3.29, and 12.3 for A01_LTD, A02_YLQ, A24_NYN, A24_QYI, and 

B15_NQK responsive TCRs, respectively. The corresponding P-values derived from the Chi-square 

independent test were all smaller than 0.001. Due to the limited training data, the TCR clonotypes 

near the pMHC anchor representing B44_AEV or B44_QEL exhibited ambiguous experimental 

specificity. We also inspected the gene expression profiles of the antigen-specific TCR clusters (Fig. 

3g), including cytotoxic markers (NKG7, GNLY, GZMB, GZMH), memory markers (TCF7, IL7R, 

SELL), and exhaustion markers (CTLA4, PDCD1, TOX, TIGIT)68. Although the antigen-specific T 

cell population was composed of T cells with various functions and phenotypes from different 

samples45, we inferred several general characteristics of the T cell composition in the antigen-

specific clusters. Spike-specific T cells corresponding to A02_YLQ and A24_NYN might maintain 

large amounts of T cells with durable cellular memory according to the upregulated expression of 

the memory markers. T cells targeting A02_LLY accounted for a lower proportion of differentiated 

effector T cells due to the downregulated expression of cytotoxic markers, which partly resulted 

from reduced proportions in vaccinated samples.  

We compared the binding ranks of TCR-pMHC pairs from each sample across five categories, 

including infection only (inf), vaccinated only (vax2), infected followed by one/two doses of 

vaccine (inf-vax1/inf-vax2), and breakthrough infection after two doses of vaccine (vax-inf). 

Median binding ranks by stratifying donors and epitopes across infection or vaccination categories 

revealed an increase in the binding strength with spike epitopes after vaccination compared to non-

spike responses (Fig. 3f), especially in the inf-vax2 group (P=0.033, Student's t-test). We observed 

a similar trend in T cell clonal expansion that the clone sizes of spike-specific TCRs were greater 

than non-spike clones after vaccination, especially in the inf-vax2 group (P=0.003, Student's t-test), 

to corroborate EPACT’s predictions. We further divided the SARS-CoV-2 responsive TCR 

clonotypes into “Strong binder” (≥99.5%), “Weak binder” (≥95%), and “Others”. Strong binders 

with spike epitopes and the union of strong and weak binders accounted for a higher proportion in 

the TCR repertoire (Extended Data Fig. 3d-f).  Our analyses aligned well with the experimental 

findings that spike and non-spike T cell response varied with SARS-CoV-2 infections and mRNA 

vaccination. 
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EPACT uncovers residue-level interactions between epitope and CDR loops 

Despite the complicated recognition mechanism between paired TCR chains and the pMHC 

complex to trigger immune responses, the residual-level interaction undoubtedly plays an essential 

part in the formation and stability of the TCR-pMHC complex7. Accurate identification of hydrogen 

bonds and van der Waals interactions between epitope and CDR loops can promote understanding 

of the potential source of TCR degeneracy and cross-reactivity. We first cross-validated the fine-

tuned version of EPACT and TEIM-Res34, a state-of-the-art predictor for residue-level interactions 

between CDR3β and epitope, on 148 public TCR-pMHC complex structures in STCRDab69. We 

also included a baseline method that output an average distance matrix. We ensembled the 

validation predictions of CDR3β-epitope interactions and calculated the Pearson correlation 

coefficient (PCC) and root mean squared error (RMSE) for distance matrix prediction and area 

under ROC curve (AUC) for contact site prediction (Fig. 4a). EPACT manifested a significant 

advance compared to the average baseline and TEIM-Res. Specifically, EPACT achieved a median 

PCC of 0.953 (TEIM-Res, 0.942, P=5e-7, Paired t-test), a median RMSE of 2.05 (TEIM-Res, 2.22, 

P=2e-6), and a median AUC of 0.966 (TEIM-Res, 0.958, P=0.05). EPACT outperformed TEIM-

Res in predicting CDR3β-epitope interactions for almost 70% of the available TCR-pMHC 

structures (Extended Data Fig. 4). 

Moreover, EPACT supported the investigation of interaction conformation between epitope and 

other CDR loops than CDR3β, thanks to incorporating all six CDR sequences. After analyzing the 

distances between the closest residue pairs in each TCR-pMHC complex (involvement of CDR1α 

and CDR3α in van der Waals interactions with the epitope in 76.4% and 86.5% of the structures), 

we chose to quantify the structural interplay between CDR1α, CDR3α, and the epitope (Fig. 4b). 

The cross-validation metrics for distance and contact predictions containing CDR1α and CDR3α 

amino acid residues were comparable to CDR3β-epitope predictions (e.g., average PCC, CDR1α: 

0.928, CDR3α: 0.925, CDR3β: 0.942). 

We applied the interaction model to interrogate the residue-level binding characteristics between a 

series of cross-reactive TCRs and their epitope targets. Yang et al. performed peptide activation 

assays to determine the activated human or microbial peptides presented by HLA-B*27:05 for 

several TCRs with a disease-associated TRBV9–CDR3β motif46. We predicted the distance and 

contact matrices for 60 activated TCR-peptide pairs to interpret TCR cross-reactivity leading to the 

autoimmune disease. We attempted to discover shared properties of interaction conformation at the 

TCR-pMHC interface. We selected the five most common peptides that activated the expanded 

TCR clonotypes in ankylosing spondylitis (AS) and acute anterior uveitis (AAU) patients, including 
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YEIHbac (LRVMMLAPF), PRPF3self (TRLALIAPK), GPER1self (GQMWLLAPR), RNASEH2Bself 

(GQVMVVAPR), and gspDbac (GKTELLAPF). The structure organization of the peptides depicted 

a conserved TCR recognition mode emphasizing crucial contact sites at P4, P6, and P8 of the 

peptide46 (Fig. 4c). Contact scores predicted by EPACT not only identified the binding hotspots and 

structural motif (amino acid at P4 stretching out towards the CDR1α loop while amino acid side 

chains at P6 and P8 facing the CDR3β) but also captured the slight structural deviations (Fig. 4d). 

Methionine (M) at P4 obtained a higher contact score to the CDR1α loop than other amino acids, 

which coincided with structural evidence regarding side chain arrangement. 

 

EPACT facilitates the illumination of molecular mimicry in TCR cross-reactivity 

To further explore the underlying mechanism of TCR cross-reactivity, we applied EPACT to 

predict the interaction conformation between a cancer-reactive MEL8 TCR and three tumor-

associated epitopes in the context of HLA-A*02:0147. The TCR clone was derived from a stage IV 

malignant melanoma patient with successful tumor-infiltrating lymphocyte (TIL) therapy70. Dolton 

et al. attributed the multipronged T-cell recognition of different cancer-specific or pan-cancer 

antigens to molecular mimicry according to the shared binding motif and structural hotspots. Since 

the crystal structure of MEL8 TCR-pMHC was not included in the training data, we directly utilized 

EPACT to quantify the residue-residue distance matrices and predict inter-chain contact residue 

pairs between CDR1α, CDR3α, CDR3β loops of MEL8 TCR and a 10-mer Melan A peptide 

EAAGIGILTV (Fig. 4e). We extracted the corresponding distance maps from the complex structure 

(PDB: 7Q9B) to validate the predicted interactions. Amino acids of CDR3α were less likely to form 

stable interactions with the tumor-associated peptide (closest residue-residue distance, 4.5Å, 

Supplementary Fig. 6), so we focused on CDR1α and CDR3β in the following analyses. EPACT 

demonstrated an outstanding prediction performance for the core regions of the CDR1α-epitope 

(PCC, 0.961; RMSE, 0.782; AUC, 1.00) and CDR3β-epitope (PCC, 0.728; RMSE, 1.71; AUC, 

0.852) interfaces. We chose the residue pairs that probably formed van der Waals forces or 

hydrogen bonds (closest distance ≤ 4.0Å) from CDR1α, CDR3β, and the peptide and compared the 

experimental distances and predicted distances by EPACT (Fig. 4f,g and Supplementary Fig. 6). 

We also included TEIM-Res predictions for these contact amino acid pairs. EPACT significantly 

reduced the prediction errors for nearly all the residue pairs compared to the state-of-the-art method 

TEIM-Res. Specifically, EPACT reconstructed the CDR3β binding mode (with minor prediction 

errors) around the central Threonine (T), connecting four consecutive peptide amino acids (G4, I5, 
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G6, and I7)47 by one hydrogen bond and van der Waals interactions. The consensus on core 

interacting sites also suggested the peptide motif contributing to the molecular mimicry.  

Leveraging EPACT’s binding specificity model, we characterized the amino acid preference among 

the tumor-associated peptides to activate the cross-reactive MEL8 TCR. More specifically, we 

curated a collection of 10-mer peptides presented by HLA-A*02:01 from IEDB71 and predicted 

their binding scores with the MEL8 TCR. We randomly chose 2,000 peptide sequences from the 

background population and utilized a simulated annealing strategy to generate the peptide motif 

(Fig. 4h). We introduced a point mutation to each peptide sequence and updated its binding score to 

the TCR target in one iteration. After filtering the favorable mutations for 500 iterations, the amino 

acid preference derived from the top 2% of predictions successfully captured the G-I-G-I motif, 

similar to positional scanning in the experimental peptide library72, 73. In silico simulation also 

implicitly suggests a possible position shift of the G-I-G-I motif, while the Melan AA2L peptide 

ELAGIGILTV might initiate MEL8 T cell activation even more effectively. The Melan A peptide, 

bone marrow stromal antigen 2 (BST2) peptide LLLGIGILVL, and insulin-like growth factor 2 

mRNA-binding protein 2 (IMP2) peptide NLSALGIFST that responded to MEL8 TCR in 

activation assays obtained top binding ranks (top 0.2%, 0.3%, and 11.1%) among the IEDB HLA-

A*02:01 presented peptides (Fig. 4i). These peptides also demonstrated elevated contact levels with 

the side regions of CDR1α and CDR3β loops compared to the average level of other top binders 

(Fig. 4j). In addition, we employed the validation prediction for interactions between another cross-

reactive TCR (MEL5) and the BST2 peptide (Extended Data Fig. 5a-e) to affirm EPACT’s 

capacity to decipher the driving factors of molecular mimicry. In addition, structural modeling 

results of MEL8-BST2 peptide and MEL8-IMP2 peptide interactions also provided additional 

evidence for the EPACT-predicted interaction conformations (Supplementary Fig. 7). 

 

Discussion 

EPACT represents a novel interpretable framework to address the multi-scale interaction within the 

TCR-pMHC complex and adapt to emerging paired TCR sequencing data by single-cell techniques. 

It has achieved state-of-the-art performance in predicting TCR binding specificity and residue-level 

contacts, leveraging the power of a pre-trained language model and contrastive learning. We have 

also demonstrated the application potential of EPACT by performing in-depth analysis, including 

identification of antigen-specific TCR clusters in T cell repertoire, estimation of SARS-CoV-2 

spike and non-spike specific T cell response upon vaccination, and investigation of TCR cross-
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reactivity after immunotherapy to recognize multiple tumor-associated antigens. In accordance with 

the sustained release of high-quality TCR binding specificity data and TCR-pMHC complex 

structures, EPACT is expected to be developed and explored as a more practical computational tool 

to accelerate disease diagnosis and assessment of T cell-based immunotherapies and vaccines in 

diverse clinical studies. 

Despite the superiority of EPACT over other methods in model generalizability and interpretability, 

it still can be improved to be applied to the real-world clinical scenario, especially for predicting the 

responsive TCRs for neoepitopes. For predicting TCR antigen recognition for other targets with 

fewer binding TCRs, the commonly used negative sampling strategy might introduce biases that 

cannot be ignored42. Data scarcity of the less frequent HLA alleles might also influence the model 

predictions21. Although EPACT has already provided a version that accepts only CDR3αβ 

sequences of TCRs to handle the missing V-, J-gene annotations, it cannot deal with other partial 

inputs, such as single TCR chain and multiple TCR alpha chains that still often exist in scTCR-seq 

data30 or lacking MHC allele information. Excluding these incomplete records might affect 

EPACT’s performance in linking TCR binding specificity with T cell expression and phenotypes 

derived from diverse antigen exposure and clinical treatments. In addition to the challenges caused 

by data imbalance, we plan to extend the interaction conformation predicted by EPACT to 

reconstruct the three-dimensional structure of the CDR-epitope interface74 in our future work, 

which hopefully will provide a more intuitive view to model and interpret molecular mimicry and 

TCR cross-reactivity. 

 

Methods 

Datasets 

Pre-training peptides and TCRαβ sequences 

To prepare the pre-training dataset of human peptides, we filtered the linear epitope sequences 

within the length of 8-25 amino acids of the positive T cell and MHC ligand assays in the immune 

epitope database71 (IEDB). The pre-training corpus of paired TCRαβ sequences was obtained from 

the single-cell immune profiling data of the healthy and tumor donors in 10X Genomics Datasets  

(https://www.10xgenomics.com/resources/datasets, Supplementary Table 2) and five previous 

studies adopted in STAPLER75-79. All unique TCR clonotypes with CDR3 sequence ,V- and J-gene 

annotations were extracted for TCR alpha and beta chain. Next, 1,081,172 peptides and 183,503 
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TCR pairs were split into training, validation, and test datasets according to the ratio of 0.8:0.1:0.1, 

respectively. 

 

Peptide-MHC binding/presentation dataset 

Binding affinity data between peptides and MHC was derived from the training data set of 

NetMHCpan-

4.152(https://services.healthtech.dtu.dk/suppl/immunology/NAR_NetMHCpan_NetMHCIIpan/), 

including 170,470 scaled and normalized half-maximal inhibitory concentration (IC50) values 

spanning 111 HLA class I alleles: 

��IC��� � max�0,1 
 log������IC���� 

We randomly selected 10% of the affinity data for testing and trained the model on the remaining 

data since the original paper did not provide any independent test data. The training and validation 

data for predicting epitope presentation consisted of 288,032 eluted ligands (EL) and 16,739,285 

negative pairs, respectively, across 149 alleles collected from BigMHC53 

(https://data.mendeley.com/datasets/dvmz6pkzvb/4). The evaluation data comprising 45,409 ELs 

and 900,592 negative pairs spanning 36 alleles was the same EL dataset used in the NetMHCpan-

4.1 study for benchmarking. 

 

TCRαβ-pMHC recognition dataset 

To construct a representative dataset for TCR-pMHC recognition, we combined the human TCR-

pMHC binding pairs with confirmed CD8 expression from multiple sources, including IEDB71, 

VDJdb56, McPAS-TCR80, TBAdb81, 10X82, and Francis66. We associate the TCR sequences with 

the T-cell assays of specific epitope and MHC allele in IEDB (https://www.iedb.org/), which were 

downloaded on 31/08/2023 using the query parameters of Host: Homo sapiens, Reference type: 

journal article, linear epitope, MHC class I, and T cell assays only. We also downloaded the human 

TCR-pMHC-I datasets with paired TCRαβ sequences from VDJdb database 

(https://vdjdb.cdr3.net/), McPAS-TCR database (http://friedmanlab.weizmann.ac.il/McPAS-TCR/), 

and TBAdb from Pan immune repertoire database (PIRD, https://db.cngb.org/pird/), respectively. 

The 10X dataset was obtained from over 150,000 CD8+ T cells of four healthy donors staining with 

44 distinct pMHC multimers. We integrated the binarized matrices and TCR clonotype annotations. 

We assigned the TCR binding specificities according to the criteria of UMI counts described in the 
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application note “A new way of exploring immunity: linking highly multiplexed antigen 

recognition to immune repertoire and phenotype”. We also extracted the TCRαβ-pMHC binding 

pairs from CD8+ T cells of 28 SARS-CoV-2-infected patients and 23 unexposed individuals 

staining with SARS-CoV-2-derived DNA-barcoded-pMHC-multimers in the supplementary data 

file S3 of Francis et al., then removed the TCR clonotypes annotated with multiple alpha chains. 

We concatenated the TCRαβ-pMHC binding pairs containing CDR3αβ sequences, V- and J-gene 

annotations, peptide sequences, and MHC alleles from six original datasets into a combined dataset. 

The pre-processing of TCR-pMHC recognition data is presented in Supplementary Methods. 

Statistics of the datasets used for training and validation are shown in the Supplementary Table 3. 

 

SARS-CoV-2 epitope-specific TCR clonotypes 

The SARS-CoV-2-responsive TCR dataset was derived from a cohort of 55 individuals, including 

16 SARS-CoV-2 negative participants, 30 participants recovered from mild disease, and 9 

participants experienced symptomatic breakthrough infection that shaped spike-specific and non-

spike-specific immune responses of memory CD8+ T cells upon infection and vaccination45. SARS-

CoV-2 epitope-specific TCR clonotypes were identified and sequenced through DNA-barcoded 

MHC dextramers and single-cell TCR sequencing (scTCR-seq). This study assigned TCR 

recognition specificities for six spike protein epitopes and 12 non-spike epitopes presented on HLA 

alleles A*01:01, A*02:01, A*24:02, B*15:01, and B*44:02 according to the dextramer barcode 

UMI counts. We excluded two SARS-CoV-2 epitopes (A01_NTN and B44_VEN) from our 

analysis due to the minimal numbers of corresponding T cells and finally obtained 4471 TCR 

clonotypes. We removed the overlapped TCRαβ-pMHC pairs in our training dataset or the training 

data of MixTCRpred30. For external benchmarking, 3,540 TCR clonotypes with their 

experimentally assigned specificities were selected.  

 

TCRαβ-pMHC complex structures 

The crystal structures of the TCRαβ-pMHC complex were derived from the STCRDab69 

(https://opig.stats.ox.ac.uk/webapps/stcrdab-stcrpred) database. After removing the noisy ones 

(PDB IDs: 6UZI, 7BYD) and duplicated TCRαβ-pMHC pairs, we constructed a structural dataset of 

148 crystal structures. We extracted the coordinates of the heavy atoms of the amino acid residues 

and calculated the residue-level closest distances between CDR loops (CDR1α, CDR3α, and 
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CDR3β) and the epitope. Contact residue pairs were defined as those whose spatial distances are 

within 5�, based on which the contact matrices were calculated and generated. 

 

Epitope-anchored contrastive transfer learning 

Model backbone 

Under the transfer learning paradigm, paired TCRαβ sequences of the binding or non-binding TCRs 

were sampled and input into the TCR language model to obtain the pre-trained TCR embeddings, 

respectively. At the same time, the representations for the pMHC complex were extracted from the 

peptide-MHC binding prediction model that took HLA molecules with their presented peptides as 

inputs. Model development of the pre-trained model can be found in Supplementary Methods. A 

multi-head self-attention layer and two 1x1 residual convolutional blocks were subsequently 

applied separately for further feature extraction from each sequence modality. Next, the fine-tuned 

embeddings of TCR and pMHC were fed into the contrastive co-embedding module or fused to 

provide model predictions for different downstream tasks. 

 

Contrastive co-embedding module 

The classification embeddings representing [CLS] tokens of TCR and pMHC were projected to a 

shared latent space by two MLP projectors. We designated one pMHC complex as an anchor in 

contrastive learning and then pulled the binding TCRs close to the anchor in the latent space while 

pushing the “non-binding” ones away. Given one pMHC complex �, a set of binding (positive) 

TCRs ����, and a bunch of decoy (negative) TCRs ��	
 with their projected representations in a 

training batch, cosine similarity between the pMHC anchor and sampled TCRs were calculated. The 

cosine similarities between TCR-pMHC binding pairs were expected to be larger than the 

similarities between the shuffled negative pairs. The epitope-anchored supervised contrastive loss54 

was calculated as follows: 

��� � 
 � � log exp�sim���
 , ����/τ�
exp�sim���
 , ����/τ�  ∑ exp�sim���
 , ����/τ��

������������
���

, 

where sim�"� denotes cosine similarity, and �’, �’ represent the projected embeddings of pMHC and 

TCR, respectively. $ is the temperature factor of the loss function, %
 is the collection of pMHC 

complexes in one batch, and five decoy TCRs are sampled each time. 
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Binding specificity prediction 

We evaluated the model capacity to predict the binding specificities for unseen epitopes through 

five-fold cross-validation and assessed model generalizability on distinct TCR background 

populations from VDJdb. Epitopes in the training data were divided into groups by hierarchical 

clustering according to a minimum similarity score of 0.8 to achieve the zero-shot setting in cross-

validation. The pairwise similarity score between epitope sequences &�  and &� was defined as: 

'�&� , &�� � SW�&� , &��
*SW�&� , &��SW�&� , &��

, 

where SW�"� denotes the local alignment score between two protein sequences using the Smith-

Waterman algorithm83 and BLOSUM62 substitution matrix. To predict TCR-pMHC binding 

specificities, classification [CLS] embeddings of TCR and pMHC were concatenated and input into 

an MLP classifier and sigmoid activation function. In addition to minimizing the contrastive loss, 

the binary cross entropy between predicted logits and labels was also included in the loss function 

to improve the adaptivity to unseen data.  

� � 
 � � +log ,-��
 , ���.  � log ,1 
 -��
 , ���.�

������

/
������
���

 κ���, 

where -��, �� denotes the predicted logits given the embeddings of pMHC and TCR, and 1 is the 

weighting factor of the contrastive loss. Parameters of the pre-trained epitope language model, TCR 

language model, and MHC convolutional encoder were fixed. The cross-attention layer was fine-

tuned to include TCR recognition information from MHC molecules. The AdamW optimizer with a 

learning rate of 2e-4 was used to train the binding specificity model for 50 epochs, and an early 

stopping strategy was employed to monitor the validation AUC. 

 

Interaction conformation prediction 

The residue-level interaction between CDR (CDR1α, CDR3α, CDR3β) sequences and epitope 

demonstrated an essential signature for the binding conformation of the TCR-pMHC complex. Thus, 

the residue-level TCR and pMHC feature embeddings were integrated by outer product and 

subsequently fed into a 2D convolutional layer with a kernel size of 323. The output of the 

convolutional layer consisted of two channels: the first channel was followed by a ReLU activation 
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function to predict the pairwise distance matrices between CDRs and epitope; the second one used a 

sigmoid function to predict the contact probabilities between amino acid residue pairs. Five-fold 

cross-validation was performed in which highly similar epitopes were split into different folds 

(using the same strategy of epitope clustering in binding specificity prediction). A modified MSE 

loss divided by the distance between residues was utilized to reduce the influence on predictions 

from distant residue pairs, and binary cross-entropy loss was used for contact prediction. The 

weighting factors for interaction that involve CDR1α, CDR3α, and CDR3β were set to 0.3, 0.6, and 

1.0, respectively, after taking into consideration of the sequence length and critical role of CDR3β. 

The two parts of loss were summed up and optimized using the AdamW optimizer with a learning 

rate of 2e-4 for 100 epochs. The pre-trained parameters were unfrozen in this stage, but the fine-

tuning learning rate was ten times smaller.  

All deep-learning models included in EPACT were implemented using PyTorch 2.0.1 and trained 

on one NVIDIA GeForce RTX 3090 GPU. Detailed model size and hyperparameters are provided 

in the Supplementary Table 4. 

 

Clustering analysis of epitope-specific TCR clones in co-embedding space 

Representations of pMHC and TCR sequences were projected into the shared latent space, so we 

defined the embedding vector of a particular pMHC anchor as the centroid of the corresponding 

pMHC/epitope-specific TCR clusters. Therefore, candidate TCRs could be assigned to the closest 

pMHC anchor according to their cosine similarity. We also introduced a similarity threshold of 0.4 

to maintain the high specificity of the epitope-specific TCR clusters. The pMHC anchors 

representing 16 SARS-CoV-2 epitopes and the epitope-specific TCR clones were visualized in two-

dimensional space after Uniform Manifold Approximation and Projection65 (UMAP) with the 

parameter of n_neighbors=10, min_dist=0.1, and the metric is the cosine distance. We collected the 

CDR3αβ sequences in each SARS-CoV-2 epitope-specific TCR cluster, performed multiple 

sequence alignment (MSA) by MUSCLE84 and drew the CDR3 motifs, respectively. The positions 

in MSA where gaps occurred in over half of the aligned sequences were removed. 

 

Analysis of epitope-specific T-cell responses upon diverse SARS-CoV-2 infection and 

vaccination 

As mentioned in the previous section, we predicted the SARS-CoV-2 epitope specificity of the TCR 

clonotypes according to the cosine distances to the pMHC anchors, thus constructing potential 
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antigen-specific T cell clusters. After comparing the ratio of experimentally assigned epitope-

specific TCRs in the one predicted cluster and others, we calculated the enrichment ratios in each 

cluster for each type of SARS-CoV-2 epitope-specific CD8+ T cells.  

ER�C� , C�
�� � N�	��


�/N�

�

,N�	

 N��

�. / ,% 
 N�

�., 

where C�,  C�� represent the set of TCR clonotypes in experimental and predicted epitope-specific 

cluster 7 and 8, respectively, and % refers to the number of all clonotypes or in a particular cluster. 

We calculated the percentage prediction rank of TCRs to validate the relationship between T cell 

specificity and SARS-CoV-2 antigen exposure. Twenty thousand TCR sequences were sampled 

from the T cell repertoires of healthy human samples to generate the background distribution of 

binding scores, and we located the percentile for the candidate TCR. We also collected the 

expression profiles of various subsets of memory CD8+ T cells and metadata, including donors, 

vaccination category, and spike specificity from the original study45, to analyze the variation of 

binding specificity and clonal expansion upon diverse conditions. 

 

Calculation of contact scores and amino acid preference of peptides for cross-reactive TCRs 

We predicted the residue-residue contact matrices between the cross-reactive AS-associated TCRs 

and their cognate peptides (viral peptides and self-peptides). The contact score of each amino acid 

residue along the peptide sequence was defined as the average of the top three contact probabilities 

with CDR1α or CDR3β residues. We also performed an in silico screening of cognate peptides for a 

particular TCR (MEL8/MEL5 TCR) by simulated annealing85 to investigate the consensus among 

binding peptides. Firstly, two thousand peptides were sampled from all HLA-A*02:01-presented 

epitopes deposited in the IEDB database as the initial peptide population. We predicted their 

binding scores with the target TCR and then randomly mutated a single amino acid of each peptide. 

After predicting the TCR binding specificity of the mutated sequences, the mutations with increased 

binding scores were accepted. In contrast, part of the other mutations was retained according to the 

acceptance probability. 

9�', '�, :� � exp +' 
 '�
��:� /, 

where ' and '� denote the binding scores of the original and mutated peptide sequence, ��:� is the 

temperature of the :th iteration that declines proportionally. After 500 iterations, the top 2% of the 
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final peptide population was extracted to render the sequence motif and heatmap representing the 

amino acid preferences of peptides for the cross-reactive TCRs. 

 

Validation of interaction conformation between MEL8/MEL5 TCR and TAAs 

We chose the TCR-pMHC complexes containing MEL8/MEL5 TCR and cognate tumor-associated 

antigens from the PDB database (PDB IDs: 7Q9A and 7Q9B) to validate the residue-level 

predictions of pairwise distances and contact probabilities. Contact residues from CDR loops and 

the epitope involved in van der Waals interactions (≤ 4 Å) and hydrogen bonds (≤ 3.4 Å) were 

selected for performance evaluation and visualized using PyMOL 2.4.0. We characterized the 

interaction conformations between MEL8/MEL5 TCR and all of the Melan A, BST2, and IMP2 

peptides and compared them with the structural modeling results. The web server of TCRmodel286 

was employed to predict the 3D structures of TCR-pMHC complexes (modeling statistics in the 

Supplementary Table 5). We also computed the contact scores along CDR1α and CDR3β 

sequences with the HLA-A02-presented peptides that possibly bind to MEL8/MEL5 TCR (derived 

from binding specificity predictions by EPACT).  

 

Statistical analyses 

All statistical tests in the study were two-sided. The error bars in the bar plots represent 95% 

confidence intervals unless otherwise stated. Performance benchmarking metrics, including AUC, 

AUPR, and RMSE, were calculated using the Python package scikit-learn 1.3.0. UMAP was 

performed using the Python package umap-learn 0.5.5. Local sequence alignment and hierarchical 

clustering of epitope sequences were performed using the Python package biopython 1.8.1 and 

scipy 1.11.1, respectively. Sequence motifs were visualized by the Python package logomaker 0.8 

using the color scheme of “weblogo_protein”87. PyMOL 2.4.0 was used to visualize the 3D 

structure of TCR-pMHC complexes. 

 

Data availability 

The curated datasets of TCR-pMHC recognition are shared and publicly accessible on GitHub 

https://github.com/zhangyumeng1sjtu/EPACT. Detailed information about the 10X Genomics 

Datasets is available in Table S2 and at  https://www.10xgenomics.com/datasets. The crystal 

structures of TCR-pMHC complexes were obtained from the RCSB PDB database 

(https://www.rcsb.org/). Other structures listed in Table S5 were derived from TCRmodel286 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2024. ; https://doi.org/10.1101/2024.04.05.588255doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.05.588255
http://creativecommons.org/licenses/by-nc-nd/4.0/


(https://tcrmodel.ibbr.umd.edu/) predictions. TCR sequences, experimental epitope specificity, gene 

expression, and other metadata of the SARS-CoV-2 responsive T cells were obtained from the 

original study45 (https://doi.org/10.1038/s41590-022-01184-4). Cross-reactive TCRs and activated 

peptides in the context of HLA-B*27:05 were obtained from the original study46 

(https://doi.org/10.1038/s41586-022-05501-7). Binding hotspots between MEL8 or MEL5 TCR and 

corresponding pMHC complexes were derived from the original study47 

(https://doi.org/10.1016/j.cell.2023.06.020). 

 

Code availability 

The source code and model weights of EPACT are available on GitHub 

https://github.com/zhangyumeng1sjtu/EPACT. 
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Figure legends 

Fig. 1 EPACT boosts CD8+ TCR-pMHC recognition for unseen peptides and distinct TCR 

populations. a, Schematic diagram of TCR-pMHC recognition. Created with BioRender.com. b, 

The model backbone of EPACT consists of pre-trained peptide and TCR language models, a pMHC 

model to predict epitope binding or presentation, and a contrastive learning module. The epitope 

representations with fused MHC information and the sampled TCR embeddings are fed into the 

contrastive learning module together. c, Two related tasks for predicting TCR-pMHC recognition: 

(top) Binding specificity prediction, output a binding score to decide whether the input TCR-pMHC 

pairs can bind together; (bottom) Interaction conformation prediction, output residue-level distance 

matrix and contact matrix between CDR loops and the epitope. d, Contrastive learning module, 

TCR and pMHC classification embeddings are projected into a shared latent space after feature 

extraction by paralleled self-attention layer and residual convolutional blocks. The contrastive loss 

is computed according to the cosine distances between the pMHC anchor and binding or decoy 

TCRs in the co-embedding space. e, The experimental and predicted binding affinity (normalized 

IC50 values) of test peptide-MHC pairs. f, Predicted AUPRs across 36 MHC alleles evaluated on the 

test dataset of BigMHC. The P-values were calculated by the Wilcoxon signed rank test. *P<0.05, 

****P<0.0001. g, Bar plots of AUPRs and h, precision-recall curves of the candidate methods in 

cross-validation (predicting for unseen epitopes). The error bars indicate the standard deviation of 

AUPRs across five-folds, and the shade around the precision-recall curves represents the standard 

error of precisions. i, Bar plots of AUPRs and j, precision-recall curves of the candidate methods in 

testing (predicting for VDJdb TCRs). The error bars indicate the 95% confidence intervals by 1000 

bootstrap iterations. The gray dashed lines denote the results of random predictions. 
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Fig. 2 EPACT incorporates all CDR loops and interprets TCR specificity in co-embedding 

space. a, Bar plots showing EPACT’s performance in predicting binding specificity for unseen 

epitopes and VDJdb TCRs using different datasets that used CDR3αβ or all six CDR loops to 

represent TCR sequences. (left) AUC (right) AUPR. The error bars under the evaluation settings of 

unseen epitopes denote the standard deviation across five folds. b, Receiver-operating characteristic 

curve (left) and precision-recall curve (right) to evaluate the testing performance of EPACT-CDR3 

and EPACT on VDJdb TCR-pMHC pairs. The gray dashed lines denote the results of random 

predictions. c, Comparison of AUPRs derived from ERGO-II, STAPLER, NetTCR-2.2, and 

EPACT for 24 epitopes with over ten binding TCRs in the test dataset. The darker color and larger 

size of the point indicate a higher AUPR. d, UMAP projection of the predicted SARS-CoV-2 

epitope-specific TCR clusters. The TCR embeddings were derived from the co-embedding space 

via contrastive learning. e, Sequence motifs of CDR3α and CDR3β representing the epitope-

specific TCRs for two spike protein epitopes (top) YLQPRTFLL and (bottom) NYNYLYRLF. f, 

UMAP projections of five spike epitope targets and experimental binding TCRs. The red cross in 

each subplot denotes the corresponding pMHC anchor, the blue points represent the binding TCRs, 

while the gray points indicate the decoys TCRs with no experimental evidence responding to the 

target, respectively. 
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Fig. 3 EPACT predicts epitope-specific CD8+ T-cell responses to SARS-CoV-2 infection and 

vaccination. a, Test AUPRs on unseen SARS-CoV-2 TCR-pMHC recognition dataset. Two 

methods receiving paired CDR3αβ inputs and another four based on additional V-, J-gene 

annotations were compared. b, Precision-recall (PR) curves of EPACT-CDR3, NetTCR-2.2, 

EPACT, and MixTCRpred. The gray dashed lines denote the results of random predictions. c, 

Pairwise comparison of test AUPRs for 14 epitope targets between two models using CDR1, CDR2, 

and CDR3 sequences (EPACT and NetTCR-2.2). Five spike epitopes are annotated in red text. d, 

Workflow to analyze SARS-CoV-2 responsive TCR clonotypes collected from Minervina et al., 

including antigen-specific clusters and TCR binding ranks. e, Heatmap of log enrichment ratios of 

TCRs with experimental specificity across predicted antigen-specific clusters. Darker colors along 

the diagonal indicate better alignment between prediction and experiment results. f, Median binding 

rank and log clonal expansion of spike-specific and non-spike-specific TCR across four groups 

upon diverse SARS-CoV-2 antigen exposure and vaccination (inf, inf-vax1, inf-vax2, and vax2-inf). 

The comparisons between spike-specific and non-spike-specific TCR responses were conducted by 

Student’s t-test (P-values are displayed above the violin plots). g, Bubble plot of normalized 

expressions and fractions of expressed cells of T cell mark genes in each antigen-specific TCR 

cluster defined by EPACT. The circle size denotes the percentage proportion of cells expressing a 

marker gene in each cluster, while the color scale indicates normalized gene expression across all 

clusters. 
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Fig. 4 EPACT characterizes TCR-epitope interaction conformation and structure-driven 

TCR cross-reactivity. a, Box plots displaying the cross-validation PCC (left), RMSE (middle), and 

AUC (right) in predicting distance and contact matrix between CDR3β and epitope by average 

baseline, TEIM-Res, and EPACT. The P-values are derived from paired t-tests. The median values 

are highlighted in red. b, Cross-validation PCC, RMSE, AUC in predicting distance and contact 

matrix between CDR1α, CDR3α, or CDR3β and epitope. Higher PCC and AUC stand for better 

performance, whereas RMSE is the opposite. c, Visualization of the representative TCR-pMHC 

binding interfaces for YEIHbac, PRPF3self, GPER1self, RNASEH2Bself, and gspDbac. The TCR-

pMHC complex structures were retrieved from the PDB database (PDB IDs: 7N2Q, 7N2R, and 

7N2P) or predicted by the TCRmodel2 sever (structures surrounded by gray dashed lines). d, 

Average contact scores to CDR1α (top) and CDR3β (bottom) loops of the amino acids along the 

peptide sequence predicted by EPACT. The error bars denote the standard deviations of contact 

scores across all activated AS or AU TCRs. e, Residue-residue experimental (left) and predicted 

(middle) distance matrices and predicted contact scores (right) characterizing CDR1α-epitope (top) 

and CDR3β-epitope (bottom) interactions in the MEL8 TCR-Melan A peptide-HLA-A*02:01 

complex. The color scales in the heatmap represent amino acid pairs from close to distant and 

contact scores from low to high. The core interaction regions are surrounded by the dashed lines. f, 

Bar plots comparing the experimental distances in PDB structures (PDB ID: 7Q9B) and predicted 

distances by EPACT or TEIM-Res of nine inter-chain residue pairs from CDR3β and Melan A 

peptide. The gray dashed line indicates the contact threshold of 5 Å in our training setting. g, 

Visualization of the core interaction regions, including CDR1α (left) and CDR3β (right) loops of 

MEL8 TCR and Melan A peptide. The cyan and dark blue line between residues denote van der 

Waals interaction and hydrogen bond, respectively. h, Sequence motif (top) and heatmap (bottom) 

to display the positional amino acid preferences of peptides recognized by MEL8 TCR. i, Density 

plot to show the distribution of predicted binding scores to MEL8 TCR among the IEDB HLA-

A*02:01-presented peptides. The x-axis is transformed into a log scale. j, Contact scores with 

Melan A (top), BST2 (middle), and IMP2 (bottom) peptide along the CDR3β sequence of MEL8 

TCR. The red lines indicate the average contact level with the top 11.1% peptide binders along the 

CDR3β sequence.  
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Extended data figure legends 

Extended Data Fig. 1 Performance of pMHC binding affinity and eluted ligand model. a, The 

experimental and predicted binding affinity (normalized IC50 values) of tested peptide-MHC pairs 

by stratifying HLA subtypes. b, Performance of our epitope presentation model and existing 

methods (BigMHC, NetMHCpan-4.1, MixMHCpred-2.1, and TransPHLA) on each test HLA 

molecule. Pairwise comparisons between the predicted AUPR of our epitope presentation model 

and c, BigMHC and d, NetMHCpan-4. Each point represents one HLA molecule, and the orange 

point indicates the better performance of our model. 

 

Extended Data Fig. 2 Benchmarking results on paired TCRαβ binding specificity data. a, Bar plots 

of AUCs and AUPRs, and b, ROC curves and precision-recall curves of the candidate TCRαβ 

models in cross-validation (i.e., prediction of unseen epitopes). The error bars indicate the standard 

deviation across five-folds, and the shade around the curves represents the standard error of TPRs 

and precisions. c, Bar plots of AUCs and AUPRs, and d, ROC curves and precision-recall curves of 

the candidate TCRαβ models in testing (predicting for VDJdb TCRs). The error bars indicate the 95% 

confidence intervals by 1000 bootstrap iterations. The gray dashed lines denote the results of 

random predictions. 

 

Extended Data Fig. 3 Interpretable prediction and analysis of SARS-CoV-2-responsive TCR 

clonotypes.  a, Performance comparison in terms of AUPRs derived from MixTCRpred, STAPLER, 

NetTCR-2.0, NetTCR-2.2, and EPACT for 14 SARS-CoV-2 epitopes. The darker color and larger 

size of the point indicate a higher AUPR. b, UMAP projection of the predicted SARS-CoV-2 

epitope-specific TCR clusters in the unseen SARS-CoV-2-responsive TCR dataset. c, UMAP 

projections of five spike epitope targets and experimental binding TCRs. The red cross in each 

subplot denotes the pMHC anchor, the blue points represent the binding TCRs, and the gray points 

indicate the decoys TCRs with no experimental evidence responding to the target. Proportions of 

predicted strong binders (rank≥99.5%) and weak binders (rank≥95%) d, targeting each SARS-CoV-

2 epitope and e. in spike-specific or non-spike-specific TCRs across different categories of SARS-

CoV-2 infection and vaccination. f. Bar plots showing the log clonal expansion of the strong and 

weak TCR binders. 
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Extended Data Fig. 4 Pairwise comparison of predicted CDR3β-epitope interactions by EPACT 

and TEIM-Res. Scatter plots displaying the validation PCC (left), RMSE (middle), and AUC (right) 

predicted by EPACT and TEIM-Res for CDR3β-epitope interactions in each TCR-pMHC crystal 

structure. The points colored in orange and purple indicate the values of EPACT’s metrics are 

higher or lower than those predicted by TEIM-Res, respectively. 

 

Extended Data Fig. 5 EPACT identifies the recognition between three tumor-associated epitopes 

and MEL5 TCR. a, Residue-residue experimental (left) and predicted (middle) distance matrices 

and predicted contact scores (right) characterizing CDR1α-epitope (top), CDR3α-epitope (middle), 

and CDR3β-epitope (bottom) interactions in the MEL5 TCR-Melan A peptide-HLA-A*02:01 

complex. The predicted interactions were derived from validation test. The color scales in the 

heatmap represent amino acid pairs from close to distant and contact scores from low to high. The 

core interaction regions are surrounded by the dashed lines. b, Bar plots to compare the 

experimental distances in PDB structures (PDB: 7Q9A) and predicted distances by EPACT of the 

inter-chain contact residue pairs (≤4Å) from CDR1α/CDR3α/CDR3β and Melan A peptide. c, 

Visualization of the core interaction regions, including CDR1α (left), CDR3α (middle), and CDR3β 

(right) loops of MEL5 TCR and Melan A peptide. The cyan and dark blue line between residues 

denote van der Waals interaction and hydrogen bond, respectively. d, Sequence motif (top) and 

heatmap (bottom) to display the positional amino acid preferences of peptides recognized by MEL5 

TCR. e, Density plots showing the distribution of predicted binding scores to MEL5 TCR among 

the IEDB HLA-A*02:01-presented peptides. The x-axis is transformed into a log scale. 
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Supplementary figure and table legends 

Supplementary Fig. 1 Detailed model architecture of EPACT. 

Supplementary Fig. 2 Epitope-level performance in predicting TCR binding to unseen peptides.  

Supplementary Fig. 3 Evaluation of model robustness under various peptide lengths and 

similarities.   

Supplementary Fig. 4 CDR3 motifs of spike-epitope-specific TCRαβ sequences.  

Supplementary Fig. 5 Co-embedding visualization of SARS-CoV-2 antigen(non-spike)-specific 

TCRs.  

Supplementary Fig. 6 EPACT recognizes the interacting residues between the MEL8 CDR1α 

sequence and cognate epitopes. 

Supplementary Fig. 7 Mutual corroboration of EPACT-predicted interactions and structure 

modeling of MEL8 TCR-pMHC complex.  

 

Supplementary Table 1 Benchmarking results and ablation study of EPACT. 

Supplementary Table 2 10X Genomics datasets used for pre-training human TCRs. 

Supplementary Table 3 Statistics of datasets used for model training. 

Supplementary Table 4 Statistics of model size and hyperparameters.   

Supplementary Table 5 Statistics of TCRmodel2-predicted TCR-pMHC complex structures. 
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