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ABSTRACT: Studying the effect of single amino acid variations
(SAVs) on protein structure and function is integral to advancing
our understanding of molecular processes, evolutionary biology,
and disease mechanisms. Screening for deleterious variants is one
of the crucial issues in precision medicine. Here, we propose a
novel computational approach, TransEFVP, based on large-scale
protein language model embeddings and a transformer-based
neural network to predict disease-associated SAVs. The model
adopts a two-stage architecture: the first stage is designed to fuse
different feature embeddings through a transformer encoder. In the
second stage, a support vector machine model is employed to
quantify the pathogenicity of SAVs after dimensionality reduction. The prediction performance of TransEFVP on blind test data
achieves a Matthews correlation coefficient of 0.751, an F1-score of 0.846, and an area under the receiver operating characteristic
curve of 0.871, higher than the existing state-of-the-art methods. The benchmark results demonstrate that TransEFVP can be
explored as an accurate and effective SAV pathogenicity prediction method. The data and codes for TransEFVP are available at
https://github.com/yzh9607/TransEFVP/tree/master for academic use.

1. INTRODUCTION
Each person has a collection of different genomic variants,
including most single nucleotide polymorphisms (SNPs),
insertion-deletion (Indels), and other types of variants.1 The
SNPs located in protein-coding regions sometimes result in
substitutions of a single amino acid in the corresponding
protein sequence that refer to single amino acid variations
(SAVs), thus affecting protein structure and functions, and
even leading to human diseases.2,3 Although many SAVs are
not harmful to human health, nearly one-third of SAVs were
directly or indirectly associated with multiple diseases, such as
thalassemia, hereditary breast cancer, schizophrenia, and
SARS-CoV-2.4−7 Due to the constraints in existing studies,
the actual number of pathogenic SAVs present is considerably
higher.8 Therefore, it is critical to investigate the disease-
related effects of SAVs on protein function and structure.
With the advancement of next-generation sequencing

(NGS), the amount of genomic variation data has increased
exponentially. For the uncharacterized data, experimental
methods like gene probe, polymerase chain reaction (PCR),
and restriction fragment length polymorphism (RFLP) are
undoubtedly the most accurate to assess the variant effects,9

but such experimental methods have the disadvantage of high
consumption of time and money. Compared with traditional
experimental methods, computational methods have obviously
become a new auxiliary method to help researchers understand
and study the pathogenesis of genetic diseases when dealing
with large amounts of biological samples.10,11 For example,

Golgi_DF12 and Phage_UniR_LGBM13 are new classification
methods for Golgi proteins and virion proteins. This is critical
for the diagnosis and treatment of genetic diseases.
Various biocomputing methods have been developed and

improved in the past years. SIFT14 and PROVEAN15 used
sequence alignment-based protein conservation analysis to
determine the risk of SAVs. SNPs&GO16 introduced a score of
association between gene ontology (GO)17 annotations and
the pathogenicity of missense variants and encoded into LGO
features to improve prediction performance. SuSPect18 applied
the protein−protein interaction (PPI) network model to
predict pathogenic SAVs. STRUM19 and FoldX20 used protein
stability to approximate the effect of amino acid variation.21

Many classical machine learning (ML) algorithms have also
been applied to predicting the pathogenicity of SAVs,
including support vector machines (SVMs),16,22 random forest
(RF),23−26 naiv̈e Bayes classifier,27,28 gradient tree boosting,29

and ensemble ML models.30 In recent years, deep learning
(DL) models have arisen in this field.31 MutPred232 integrated
6 different feature encoding methods of genetic and molecular
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data, trained the model in a bagged ensemble architecture of
30-layer feed-forward neural network, and sorted the
pathogenic probability of the variants. DeepSAV33 incorpo-
rated population-level and gene-level information and used a
convolutional neural network (CNN) to predict SAV
pathogenicity based on input features of sequence, structure,
and functional information. Pei et al. also developed the
DBSAV database that reports gene tolerance of rare SAV
(GTS) scores of human genes and DeepSAV scores of SAVs in
the human proteome.34 In addition, Pred-MutHTP,35 mCSM-
membrane,36 and MutTMPredictor37 were developed to
predict the pathogenicity of variation in membrane proteins.
The data sets used by these methods for training and testing
are mostly extracted from ClinVar38 and HUMSAVAR39

databases, and the remaining are from precompiled variant
databases like VariBench.40

Natural language processing (NLP) has been working on
feeding large text corpora into DL-based language models
(LMs). The rapid rise of large language models (LLMs) has
led researchers to focus on whether this technology can be
applied to biological sequences with language characteristics.
The protein language model (PLM) results from applying
natural language processing methods in bioinformatics and has
succeeded in some directions.41,42 Large-scale PLM-based
embeddings learned underlying biological information from
billions of protein sequences, focusing on expressing
comprehensive features based only on protein sequences.
The manipulation of PLMs typically involves transfer learning,
where a pretrained LM is fine-tuned for a specific downstream
task.43 The PLM embeddings can be used even when resources
are limited, greatly facilitating researchers’ study and analysis.
Several PLMs have been used for a wide range of biological
tasks, including protein generation,44 remote homology
detection,42 supervised low-N function prediction,45 and
binding residues for ligand prediction.46 SSA47 is based on
bidirectional long short-term memory (LSTM) models trained
with a two-part feedback mechanism to learn useful position-
specific embeddings. CPCProt48 divided protein sequences
into fixed-size fragments and trained an autoregressive model
to distinguish protein fragments. ESM-1b Transformer49

collected 250 million sequences from the UniProt Archive
(UniParc) database50 and trained a model with ∼650m
parameters using the Transformer model. ProtTrans51 updated
6 models trained with different algorithms based on the big
fantastic database (BFD).52 MSA Transformer53 combined
multiple sequence alignment (MSA) and Transformer to
realize information interaction between multiple coevolu-
tionary sequences. ProGen54 is conditioned on taxonomic
and keyword tags such as molecular function and cellular
component, trained a 1.2B-parameter language model on ∼280
M protein sequences. Their development team then scaled up
the ProGen244 model to 6.4B parameters in databases of more
than one billion proteins.
Although PLM embeddings have made outstanding

contributions in many fields, research on predicting disease-
causing variants is still scarce. SHINE55 combined ESM-1b and
MSA Transformers to predict the pathogenicity of short
inframe insertion and deletion variants. ProtT5cons used a
single PLM embedding as input to train a CNN model for
conservative variation prediction and used its output to train a
balanced logistic regression (LR) ensemble method to predict
the effect score of SAVs.56 E-SNP&GO57 assembled ESM-1b,
ProtT5, and GO functional annotations and used SVM to

predict whether SAVs are associated with disease. These
approaches have shown initial success but are stuck at using a
single source of embeddings and directly feeding the
embeddings into the classifier for training.
In this paper, we attempt to exploit the potential of multiple

PLM embeddings. Some improvements are made in the
following aspects: (1) The input encoding is divided into two
parts, one of which includes ESM-1b,49 ESM-1v,43 and ESM-
258 (the team’s latest update), and the other is a pretrained
model ProtT551 from ProtTrans project. It does not require
any handcrafted features other than protein sequences, such as
MSA and protein function annotation while increasing the
information richness of the embeddings and not consuming
too many computing resources. (2) As reported, the functional
impact of one variant site is related to itself and several
neighboring sites.59 Therefore, we combine the local features
of the variant site and global features of the surrounding
contexual information in ProtT5 embedding. In this way, the
“microenvironment” is constructed to reflect the natural
characteristics of the variant site. (3) In protein property
prediction tasks, different features are often combined in series
as input to predictors. However, this simple and easy-to-
implement method is often not the best for predictive
performance. Here, we propose a transformer-based two-
stage embedding fusion variant predictor named TransEFVP.
Different PLM embeddings are fused through the encoder in
the transformer model, and the output is used as the input
feature of the second segment of the SVM classifier. Finally,
the pathogenicity of SAVs is determined by the predicted
probabilities. TransEFVP achieves a Matthews correlation
coefficient (MCC) value of 0.751 on the benchmark data set,
outperforming several existing state-of-the-art SAV pathoge-
nicity prediction methods. Moreover, since we only use
pretrained embeddings as input, which does not require
much computation time and resources, our method is suitable
for large-scale variation annotation.

2. MATERIALS AND METHODS
2.1. Data Set. For a more intuitive comparison, Trans-

EFVP adopts the same training and blind test set as E-
SNP&GO. These samples were collected separately from two
public sources: HUMSAVAR and ClinVar. And we only keep
the SAVs that are obviously related to the diseases listed in
OMIM60 and MONDO.61 Both databases classify SAVs into
the following classes: pathogenic or likely pathogenic (P/LP),
benign or likely benign (B/LB), and uncertain significance
(US).57 Overall, the data set contains 111,412 SAVs in 13 661
protein sequences, including 43 895 P/LP SAVs in 3603
proteins and 67 517 B/LB SAVs in 13 229 proteins.
As in E-SNP&GO, we clustered the protein sequences using

the MMseqs2 program,62 limiting a minimum sequence
identity of 25% within at least 40% of the pairwise alignment
coverage to avoid bias between the training and test sets. We
randomly selected 10% of the data to build a blind test set as a
benchmark test set to test the generalization performance of
our model and compare it with other methods. The remaining
90% of the data set was further randomly split into 10 subsets
(ensure an equal distribution of positive and negative samples
in each subset) that were used in a 10-fold cross-validation to
train and optimize the input embedding and hyperparameters
of the model. Table 1 provides a statistical summary of the
SAV data sets.
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As listed in Table 1, the final size of each data set: the
training set contains a total of 12 347 protein sequences,
including 39 812 pathogenic SAVs and 61 334 neutral SAVs;
the blind test set contains a total of 1314 protein sequences,
including 4083 pathogenic SAVs and 6183 neutral SAVs; and
an additional US data set containing 9165 SAVs in 2588
protein sequences.
2.2. Feature Representation and TransEFVP Model

Architecture. As Figure 1 shows, TransEFVP is a two-stage
SAV pathogenicity predictor based on PLM embeddings. The
model is mainly divided into three parts: an embedding-based
input feature encoding module (Figure 1A), a transformer-
based feature fusion module (Figure 1B), and a predictor and
output module (Figure 1C). The feature encoding stage is
shown in Figure 1A. The input data are SAVs from certain
positions in the human protein sequences. Five embeddings
were extracted for variant-type and wild-type of the variant
position and the surrounding microenvironment using multiple

pretrained PLM models from two projects as input for the first
stage of training. For the wild-sequence and variant-sequence,
five sets of features with lengths of 1280 and 1024 were
extracted, respectively.
At the first stage of training, we take the embedding features

from the same project as a group and use the transformer-
based encoder to deep-fuse these features. The training at this
stage will output a result at the end, and the parameters of the
model will be determined according to the quality of the result.
The obtained features are concatenated and used as the input
for the next stage of training. The details of the encoder
module for deep feature fusion are shown in Figure 1B. The
feature fusion module borrows from the TransPPMP model.63

Positional encoding provides information about the relative
positions of residues along the sequence. Four encoder layers
employing multihead attention complete the encoding and
fusion of different feature embeddings. A three-layer fully
connected neural network was used to output the pathoge-
nicity score of the first training stage. The score is used only for
comparison and determination of the model architecture. The
output of the concatenate layer is the result of feature fusion
and feed as the input of the second training stage.
The output and recognition processes are shown in Figure

1C. At the second stage of training, the 5120 features obtained
by deep feature fusion are input into an SVM predictor after
reducing the dimensionality by PCA. Whether the SAV is

Table 1. Statistical Summary of the Benchmark Data Sets

the number of variants the number of proteins

data set
pathogenic
SAVs

neutral
SAVs

pathogenic
SAVs

neutral
SAVs

training set 39 812 61 334 3279 11 945
blind test set 4083 6183 324 1284
US data set 9165 2588

Figure 1. An overall workflow of TransEFVP: Panel a is the process of extracting PLM embeddings from wild-type and variant-type sequences.
Panel B is the network architecture of the first stage of training. The extracted embeddings are input into the Transformer-based encoder,
respectively, to complete the feature fusion. Panel C is the training process for the second stage. The fused features are reduced in dimension by
PCA, and SVM completes the classification.
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pathogenic is judged according to the prediction score. Other
details of the model will be described in the following sections.
2.2.1. Input Feature Representation. In the field of NLP,

techniques based on self-supervision use the context in the text
to predict missing words, which could generally represent the
meaning of words.64 PLM is the migration application of
various language models in biochemistry. It inputs protein
sequences and learns the underlying biochemical properties,
secondary and tertiary structures, and internal laws of functions
in the sequences. The learned representation space has a
multiscale organization reflecting structure from the level of
biochemical properties of amino acids to remote homology of
proteins.49 These representations are then applied as
embeddings for downstream analysis tasks through transfer
learning.
In this paper, we integrated four different embeddings as

input for feature fusion: ESM-1b, ESM-1v, ESM-2, and
ProtT5. ESM-1b used the system optimization method to
optimize the hyperparameters in the Transformer model and
then pretrained on the UniRef50 database. Since structural
information is difficult to extract from protein sequences, a
masked language model objective is used for training the
model. That is, some fragments in sequences are randomly
masked, and the real residues in the masked part are predicted
based on the remaining residues along the sequence. It can
reflect structure−function by learning linkages between
residues in sequences. After training, multidimensional
protein-related information can be interpreted in the feature
representation of the ESM-1b model, such as residue
biochemical properties, sequence variation properties, distant
homology, secondary structure, and tertiary structure. ESM-1v
was trained on the larger UniRef90 database with the same
structure as ESM-1b. Since the model learned sequential
patterns across the entire evolutionary tree, it could perform
zero-shot predictions, i.e., migrate directly to other tasks
without additional training. ESM-1v releases five models
generated by training with five different random seeds.
Through experiments, we found that these five versions of
the model had little effect on the training results. For the sake
of saving computing resources and time, we use only the first
model among them. ESM-2 improved the model architecture
and training parameters and increased computational resources
and data. The addition of relative positional embeddings
enables generalization to arbitrary length sequences. Better
performance than previous models can be obtained with fewer
parameters. ProtT5 used the original transformer architecture
proposed for machine translation, which consisted of an
encoder that projected a source sequence to an embedding
space and a decoder that generated a translation to a target
sequence based on the embedding.51 The model is first trained
on the BFD database and fine-tuned on the smaller UniRef50
database.
In the variation encoding part, we used the above models to

extract the local and global features of the protein sequence.
Given a protein sequence with L residues, we intercept the
variant position i as the center and 100 residues before and
after to extract the microenvironment information. We encode
protein variants in a window of 201 sequence length, and then
the features of the variation position are intercepted as the
input of the next step. When using ProtT5 for encoding, we
first employ the same method to extract the features of the
variant position and then encode the entire window sequence
into the same dimension as the global feature of the network

input. It is worth mentioning that when SAV is located at the
edge of the protein or less than 100 residues from the edge, we
take the variant position as the center, retain all of the residues
on the edge side, and split 100 residues on the other side as the
window sequence.
In general, we aggregate feature vectors of dimension 11

776, and the detailed composition is as follows:
• ESM-1b embedding: 1280 features embedded from

position i of the variant-type sequence and 1280 features
from the wild-type sequence.

• ESM-1v embedding: 1280 features embedded from
position i of the variant-type sequence and 1280 features
from the wild-type sequence.

• ESM-2 embedding: 1280 features embedded from
position i of the variant-type sequence and 1280 features
from the wild-type sequence.

• ProtT5-local embedding: 1024 features embedded from
position i of the variant-type sequence and 1024 features
from the wild-type sequence.

• ProtT5-global embedding: 1024 features embedded
from a 201-long sequence window of the variant-type
sequence and 1024 features from the wild-type
sequence.

2.2.2. Feature Fusion with Encoder. Borrowing from the
Transformer model, we use 4 encoder layers employing
multihead attention. The dot-product attention function has
three inputs: Query (Q), Key (K), and Value (V). First, the
dot-product between Q and K is performed, and to prevent the
result from being too large leading to a hard softmax, we divide
by the scale dk (dk is the dimension of the K-vector). Then,
the results are normalized to a probability distribution, that is,
attention weights, by a softmax operation. Finally, the attention
weights are multiplied by V to obtain the weighted sum
representation.

i
k
jjjjjj

y
{
zzzzzz=Q K V

QK
d

VAttention( , , ) softmax
T

k (1)

In the multihead attention module, the three matrices Q, K,
and V come from the same input: the contextual information
output from the previous network layer. Q, K, and V are
integrated by the linear layer for feature integration to obtain a
new representation of Q′, K′, and V′, and then, Q′, K′, and V′
are split into multiple heads, and the scaled dot-product
attention function is applied to each head by a broadcast
mechanism, after which the attention outputs of each head are
concatenated and finally put into the linear layer to obtain the
output.
In addition, the self-attention layer can be computed in

parallel, which effectively improves the training efficiency. The
encoder also uses a dropout layer to mitigate overfitting and
improve model generalizability,65 a layer normalization layer to
expedite the convergence speed of the model,66 and a residual
skip connection to avoid vanishing gradient.
At this stage, we divide the embedding obtained above into

two parts: ESM-1v, ESM-1b, and ESM-2 as one part and
ProtT5-local and ProtT5-global as the other part. Then we
“feed” them into the encoder to obtain vectors with
dimensions of 3072 and 2048. Finally, these vectors are
concatenated as inputs to the next stage predictor. For
convenience of expression, we call the features fused through
the encoder stage TransEPT, whose dimension is 5120.
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2.2.3. Predictor and Output. In the second stage, for the
concatenated fused features, principal component analysis
(PCA) is used to reduce their dimensionality. The
dimensionality-reduced features are then input into an SVM
with a radial basis function (RBF) kernel for binary
classification, and the output results classify variants into
pathogenic and neutral. We optimized the hyperparameters of
both methods by grid search, such as the parameter
“n_components” of PCA, the penalty coefficient “C”, and
the kernel function parameter “gamma” of SVM. Through the
experimental results, we finally determined that the value of
parameter “n_components” of PCA most suitable for our task
is 0.9, parameter “C” of SVM is 1.0, and the “gamma” is set to
“scale.”
These methods are implemented through the Scikit-learn

library in Python. It is worth noting that the execution and
parameter optimization of PCA are done in the process of
cross-validation. The parameters are fixed and then projected
to the vector of the test set in the reduced space.
In this work, our proposed two-stage predictor performs 10-

fold cross-validation on the training set separately, and the
specific process follows. The training set was divided into ten
parts, and the training procedure was performed in ten
randomized cycles. For each epoch, nine parts of the data set
are used as the training set to train the model, while the
remaining part is used to test the performance of the trained

model. Then we calculated the average of ten cycles as the
performance of the model.

3. RESULTS AND DISCUSSION
3.1. Performance of Different Embeddings in the

First Stage. In the first stage of training, we evaluated the
effects of different feature embeddings and their combinations
on the training set. We took these embeddings and their
combination as the input of the encoder and applied a sigmoid
function to output the classification result. The feature fusion
classification results for different embeddings and their
combinations are listed in Table 2, and more detailed
evaluation results are provided in Supplementary Table S1.
From the experimental results, individual embeddings do

not exhibit promising performance, especially the global-based
ProtT5 embedding, which lacks independent specificity. But
when the combination of embeddings is adopted as the input
of the encoder, the model performance begins to improve.
Different combinations of embeddings can greatly improve the
prediction results, and combinations of three or more
embeddings can achieve better performance. Interestingly,
when ESM-1b and global-based ProtT5 embedding, which
have poor single embedding performance, are added to the
fusion of multiple features, the recognition of features can still
be improved. When the five embeddings are divided into two
groups, the model obtains the best prediction effect where

Table 2. Performance of Different Embeddings in the First Stage of Feature Fusion in Ten-Fold Cross-Validation
a

embedding ACC (%) precision (%) recall (%) F1 (%) ROC-AUC MCC

ESM-1b 68.1 71.2 32.0 44.2 0.792 0.302
ESM-1v 79.4 90.0 54.3 67.7 0.876 0.576
ESM-2 79.1 85.5 56.6 68.1 0.872 0.561
ESM-1b + ESM-1v 84.9 91.2 68.7 78.4 0.918 0.687
ESM-1b + ESM-2 84.8 90.5 68.9 78.3 0.917 0.683
ESM-1v + ESM-2 82.4 90.1 62.6 73.9 0.881 0.636
ESM-1b + ESM-1v-ESM-2 85.2 92.3 68.5 78.6 0.918 0.694
ProtT5-local 68.7 75.8 30.0 43.0 0.812 0.320
ProtT5-global 69.4 74.1 34.2 46.8 0.795 0.335
ProtT5-local + ProtT5-global 72.0 77.7 40.6 53.3 0.842 0.399
TransEPT 86.7 91.8 73.2 81.4 0.948 0.724

a

Note: ESM-1b, ESM-1v, and ESM-2 contain 1280*2 = 2560-dimensional features. ProtT5-local and ProtT5-global contain 1024*2 = 2048-
dimensional features.

Figure 2. ROC and precision recall curves of different methods in the feature fusion part of the first training stage. Note: model1: ESM-1b; model2:
ESM-1v; model3: ESM-2; model4: ESM-1b+ ESM-1v; model5: ESM-1b+ ESM-2; model6: ESM-1v+ ESM-2; model7: ESM-1b+ ESM-1v+ ESM-2;
model8: ProtT5-local; model9: ProtT5-global; model10: ProtT5-local + ProtT5-global; model11: TransEPT.
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MCC reaches 0.724 and F1-score reaches 0.814. We also plot
the ROC and PR curves, as shown in Figure 2, which can
reflect the performance of various embeddings more
intuitively.
To clarify the mutual influence and redundancy among

ESM-1b, ESM-1v, and ESM-2, we list the prediction
performance on the blind test set of the models trained
using these embeddings and their combinations in Supple-
mentary Table S2. The results show that there is almost no
redundancy among these three embeddings and no additional
training cost is added. In addition, we also added other features
and embeddings in the experiment, such as other versions of
ESM-1v and ProtT5, position-specific scoring matrix
(PSSM),67,68 and features based on physicochemical proper-
ties. The results show that the addition of these features does
not improve the performance of the model but increases the
computational cost. We think this is because the PLM-based
embedding has already learned enough structural and evolu-
tionary information from the protein sequence, so the
additional features are redundant. Therefore, we finally
determined that the feature fusion of ESM-1b, ESM-1v,
ESM-2 and ProtT5-local, ProtT5-global is the best input
strategy for the encoder.
3.2. Performance of Different Hyperparameters in

Encoder. The main architecture of the encoder consists of
two parts: multihead self-attention and feed-forward neural
network. Multihead self-attention includes multiple sets of Q,
K, and V weight matrices; each weight matrix is used to project
the input vector to a different representation subspace.69 The
output weight matrix becomes the input of the feed-forward
neural network after compression. In order to solve the
problem of vanishing gradient, the residual neural network
backbone is used in the encoders. That is, the input of each
feed-forward neural network not only includes the output of
the above self-attention but also comprises the most original
input. The parameter num_layer denotes the numbers of such
identical encoder layers. The parameter d_model represents
the hidden layer dimension of the model and determines the

expressive power of the model. The parameter num_heads is
the number of heads in the self-attention layers, i.e., the
number of subspaces.
Figure 3 shows the classification performance of different

numbers of encoder layers and multihead when d_model is
256 and 512, respectively, with fixed input features. The results
show that when d_model is 512, and the number of encoder
layers is 4, the model performance is substantially higher than
in other cases. Among them, when the number of heads is 4,
the effect is the most obvious. Overall, we finally determine
that the values of the parameters num_layers, d_model, and
num_heads are set to 4, 512, and 4, respectively.
3.3. Performance of Different Predictors in the

Second Stage. In the second stage of training, we use the
output features of the encoder in the previous step as the input
and use the following methods to evaluate its impact on the
final classification result: Encoder with the same structure as
above, ResNet with three Convolution_block and Identity_-
block, SVM, k-nearest neighbors (KNN) (k = 10), decision
tree (DT), RF, AdaBoost, and XGBoost.
During the experiment, we conducted multiple methods to

find the most effective classification method and its parameters
for our task. According to the training results, we fixed the key
parameters of each predictor to the values shown in
Supplementary Table S3 and performed the second cross-
validation stage on the training set. The evaluation indicators
obtained from the training of each method are shown in Table
3, and more calculation results and evaluation indicators are
given in Supplementary Table S4. At the same time, in order to
compare the prediction results of each predictor more
intuitively, we plot the confusion matrix obtained from the
experiment in Figure 4.
The experimental results listed in Table 3 show that the

complex network structure cannot further improve the
performance of the model. The addition of ResNet and
Encoder did not significantly improve the prediction results,
which shows that the PLM embeddings and transformer-based
encoder we used in the first stage have already tapped out most

Figure 3. Model performance with different numbers of encoder layers and multiheads when num_layer is 256 and 512, respectively.
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of the potential of the sequence information. And continuing
to use complex deep neural networks does not further improve
efficiency but only increases training time. DT, KNN, and RF
these three classification algorithms that are relatively mature
and have shown excellent performance in many fields have also
achieved good results in our tasks but are not the best.
Both AdaBoost and XGBoost algorithms are based on the

Boosting framework and have advantages in parallel computing
efficiency, missing value processing, and prediction perform-
ance. They also showed excellent prediction performance in
our task, especially XGBoost, which reached an MCC value of
0.756, an F1-score value of 0.850, and an ROC-AUC value of
0.947, and was the best-performing predictor in the second
stage of training. In this part of the training, SVM achieved a
slightly lower score than XGBoost, with an MCC value of
0.742, an F1-score value of 0.841, and an ROC-AUC value of
0.941. However, given the training after adding PCA and the
experimental results on the blind test set, as well as the
consideration of training time and cost, we finally selected
SVM as the second-stage predictor, which will continue to be
discussed in the next section.
3.4. Contribution of PCA to Prediction Performance.

Although our two-stage predictor has achieved good prediction
performance, since the result of our first-stage feature fusion

has a 5120-dimensional output, we consider whether we can
use PCA as a dimensionality reduction method to remove
redundant information. After experiments, we finally fixed the
n_components parameter of PCA to 0.9, reduced the
dimensionality of the features obtained in the first stage of
training, and input them into the second stage.
The results of prediction using features reduced by PCA are

listed in Table 4, the confusion matrix predicted by each

predictor is plotted in Figure 5, and the ROC and PR curves
are shown in Figure 6. More prediction results and
experimental evaluation indicators are shown in Supplemen-
tary Table S5. Experimental results show that adding PCA has
little impact on deep neural networks such as Resnet and
Encoder. Likewise, several other machine learning methods
were not significantly affected. However, the classification
result of RF decreases after application of PCA, which may be
related to the fact that random forest is more suitable for
processing large-scale data sets and high-dimensional features.
It is worth noting that SVM is the prediction method most

affected by the dimensionality reduction feature. The addition
of PCA can increase the MCC of the classification result from
0.742 to 0.757 and the F1-score from 0.841 to 0.850.
Compared with XGBoost without PCA, combining SVM and

Table 3. Performance of Different Predictors in the Second
Stage via Ten-Fold Cross-Validation

predictor
ACC
(%)

precision
(%)

recall
(%)

F1
(%)

ROC-
AUC MCC

DT 86.0 83.0 81.0 82.0 0.892 0.706
ResNet 86.9 86.6 78.9 82.6 0.918 0.723
encoder 87.1 91.5 74.2 81.9 0.947 0.730
KNN 87.7 86.1 82.1 84.1 0.935 0.741
RF 87.9 85.7 83.1 84.4 0.944 0.745
AdaBoost 88.1 85.9 83.6 84.7 0.945 0.751
XGBoost 88.4 86.3 83.8 85.0 0.947 0.756
SVM 87.7 87.0 81.3 84.1 0.941 0.742

Figure 4. Confusion matrices of different predictors in the second stage via 10-fold cross-validation. In the confusion matrix, principal diagonal
values represent TN and TP, while counterdiagonal values indicate FP and FN. Accordingly, the larger principal diagonal values indicate a more
accurate prediction model.

Table 4. Contribution of PCA to Second-Stage Prediction
Performance in Ten-Fold Cross-Validation

predictor
ACC
(%)

precision
(%)

recall
(%)

F1
(%)

ROC-
AUC MCC

DT 86.5 84.2 80.9 82.5 0.918 0.715
Resnet 87.0 91.6 73.7 81.7 0.920 0.728
encoder 87.4 91.0 75.3 82.4 0.947 0.735
KNN 87.5 86.2 81.4 83.7 0.932 0.737
RF 87.3 84.6 82.8 83.7 0.936 0.733
AdaBoost 88.2 85.3 84.7 85.0 0.946 0.753
XGBoost 88.3 85.9 84.0 84.9 0.947 0.753
SVM 88.5 87.0 83.2 85.0 0.946 0.757
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PCA can greatly shorten the training time and reduce the
training costs. Through verification on the blind test set, we
finally chose SVM and PCA, which performed best for
classification. Compared to the independent training in the
first stage, this combination can increase the MCC of the
classification result by 3.3% points (from 0.724 to 0.757) and
the F1-score by 3.6% points (from 0.814 to 0.850). We analyze
that the reason why PCA works is that there may be noise and
redundant information among various PLM embeddings,
which may mislead the weights of the model during training,
thereby affecting the classification performance.
3.5. Prediction Results on Blind Test Set. We applied

the trained two-stage SAV prediction model TransEFVP to the

blind test set, and the results are listed in Table 5. At the same
time, we list the most advanced SAV prediction tools,
including E-SNPs&GO (one of the current state-of-the-art
models dedicated to SAV prediction),57 PROVEAN,15 and
MutPred2.32 All of the methods used the same test set for a fair
performance comparison. It should be noted that in the
previous sections, we used predicted probabilities as elements
for calculating ROC-AUC values. In the experiments of this
section, to provide a more direct comparison with existing
research, we used predicted values instead of the theoretical
values as the basis for calculation.
As can be seen from the comparison results, our TransEFVP

model achieves the state-of-the-art. Models based on SVM and

Figure 5. Confusion matrices of different predictiors after adding PCA in the second-stage via 10-fold cross-validation.

Figure 6. ROC curve of the contribution of PCA to the second-stage prediction performance.

Table 5. Performance Comparison of Our Model and Other Advanced Predictors

model ACC(%) precision(%) recall(%) F1 (%) ROC-AUC MCC

TransEFVP (SVM+PCA) 88.2 87.5 81.9 84.6 0.871 0.751
TransEFVP (XGBoost) 87.9 86.3 82.7 84.5 0.870 0.746
E-SNPsPC7&GO 86.8 85.7 80.1 82.8 0.856 0.72
MutPred2.0 85.6 78.6 87.7 82.9 0.859 0.71
PROVEAN 78.2 68.7 83.0 75.2 0.790 0.57
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PCA achieved slightly better performance than XGBoost on
the blind test set. Considering the training cost and experiment
performance, TransEFVP is the better model when SVM and
PCA are used as predictors in the second stage. Compared
with existing methods, each evaluation metric of TransEFVP is
ahead of E-SNPs&GO; the more important indicators, F1-
score and MCC, increased by 3% points and 1.8% points,
respectively. At the same time, both precision and recall
(sensitivity) are higher than E-SNPs&GO, which demonstrates
that our model has stronger generalizability and robustness.
The possible reason for the better results than E-SNPs&GO

is that TransEFVP is more effective leveraging a deep attention
network model to obtain information from high dimensional
features of PLM. Although E-SNPs&GO uses similar PLM
embeddings, some key sequence and structural information
may be missed due to the relatively single embedding
perspective used. Our TransEFVP model adds PLM
embeddings from more perspectives and adds a deep attention
neural network to mine deeper information. Thanks to the
powerful performance of transformer, feature fusion in huge
dimensions will not significantly increase the computing time
and cost. This is one of the reasons why our two-stage classifier
is superior to the existing models. Compared with MutPred2.0
and PROVEAN using conventional methods, our model
reflects the superiority of PLM, which can obtain the best
performance with less computing resources and costs. In
summary, TransEFVP achieves the best performance in
predicting the pathogenicity of SAVs while ensuring the use
of fewer resources.
In order to more intuitively demonstrate the effectiveness

and robustness of TransEFVP, we use the features shared with
E-SNPs&GO for verification. Since both models use the
feature embeddings of ESM-1v and ProtT5, we designed
experiments to only use these two features to feed into their
respective model architectures. Comparison of prediction
results in 10-fold cross-validation and on the blind test set is
shown in Supplementary Figure S2. Experimental results show
that even if only the same fewer embeddings are used, the
model performance of TransEFVP is better than that of E-
SNPs&GO.
Next, we continue to explore the impact of feature fusion on

prediction results. Compared with E-SNPs&GO, our Trans-
EFVP model uses more comprehensive PLM embeddings and
microenvironment information and adds a powerful feature
fusion module. This difference can be further explored by
visualizing the features. We reduce the 5120-dimensional
features processed by the feature fusion module to 3
dimensions, plot these reduced-dimensional sequences into
scatter plots, and color them according to pathogenicity
classification. As shown in Figure 7, the vast majority of
pathogenic data are distributed in completely different areas
and can be effectively separated by the naked eye. For
comparison, we visualized the features in E-SNPs&GO and the
features in the TransEFVP model without feature fusion
module using the same method and displayed them in
Supplementary Figures S3 and S4. This means the PLM
embeddings and feature fusion modules that we use can
effectively improve classification efficiency. Due to the
powerful performance of PLM embeddings and feature fusion
module, we can use a simpler and more efficient classifier to
complete the prediction model. Ultimately, high-precision
prediction of SAVs pathogenicity is achieved using fewer
resources and time.

Additionally, we tested the TransEFVP model on the US
data set containing 9165 SAVs, and the predicted results will
be shown in Supplementary Figure S5. Since these SAVs are
meaningless variants without labels, our prediction results can
only be used as a reference. We hope that our model can be of
greater help in more research.

■ 4. CONCLUSIONS
Predicting the disease association of SAV is one of the
important steps in understanding disease mechanisms. In the
existing SAV pathogenicity prediction methods, either a single
feature expression form is used or the effective information
contained in the feature embedding is not fully mined. In this
study, we developed a novel two-stage prediction model based
on PLM embeddings to improve the performance of SAV
pathogenicity assessment to make up for the above short-
comings. The first stage of the model extracts five embeddings
based on the ESM and ProtT5 project from wild-type and
variant protein sequences as input of the encoder. After the
feature fusion through the transformer encoder with multihead
attention mechanism, the fused embeddings are fed into the
classifier of the next stage. In the second stage, these features
are subjected to PCA dimensionality reduction processing and
then input into the SVM classifier and the prediction results.
Our model TransEFVP achieves excellent results on the
training set and blind test set and outperforms existing
mainstream prediction methods. We expect TransEFVP to be
a powerful predictive tool, providing evidence and assistance
for human SAVs’ pathogenicity prediction.
In addition, even if our initial feature embedding dimension

reaches more than ten thousand, thanks to the powerful fusion
capability of the encoder, it will not cost too much computing
resources and time. Without additional feature proof, the PLM
embeddings have learned meaningful representations of
protein sequences and can be applied to various tasks and

Figure 7. Dimensionality reduction and visualization. Reduce the
5120-dimensional features to 3 dimensions and visualize the 3D
graphics as a scatter plot. The yellow points represent pathogenic
data, and the purple points represent neutral data.
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scenarios. We believe that the great potential in PLM
embeddings can still be used to contribute to human disease
research. On the contrary, the exclusive use of PLM
embeddings results in a lack of biological interpretability of
predictive model. Adding more protein structure information
to increase biological interpretability without increasing
training costs is the direction of our next efforts.
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