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Epitope-anchored contrastive transfer 
learning for paired CD8+ T cell receptor–
antigen recognition

Yumeng Zhang    1,2, Zhikang Wang    1, Yunzhe Jiang    3,4, Dene R. Littler1, 
Mark Gerstein    3,4,5,6,7, Anthony W. Purcell    1, Jamie Rossjohn    1,8, 
Hong-Yu Ou    2  & Jiangning Song    1,9 

Understanding the mechanisms of T cell antigen recognition that 
underpin adaptive immune responses is critical for developing vaccines, 
immunotherapies and treatments against autoimmune diseases. Despite 
extensive research efforts, accurate prediction of T cell receptor (TCR)–
antigen binding pairs remains a great challenge due to the vast diversity and 
cross-reactivity of TCRs. Here we propose a deep-learning-based framework 
termed epitope-anchored contrastive transfer learning (EPACT) tailored 
to paired human CD8+ TCRs. Harnessing the pretrained representations 
and co-embeddings of peptide–major histocompatibility complex (pMHC) 
and TCR, EPACT demonstrated generalizability in predicting binding 
specificity for unseen epitopes and distinct TCR repertoires. Contrastive 
learning enabled highly precise predictions for immunodominant epitopes 
and interpretable analysis of epitope-specific T cells. We applied EPACT to 
SARS-CoV-2-responsive T cells, and the predicted binding strength aligned 
well with the surge in spike-specific immune responses after vaccination. We 
further fine-tuned EPACT on structural data to decipher the residue-level 
interactions involved in TCR–antigen recognition. EPACT was capable of 
quantifying interchain distance matrices and identifying contact residues, 
corroborating the presence of TCR cross-reactivity across multiple 
tumour-associated antigens. Together, EPACT can serve as a useful artificial 
intelligence approach with important potential in practical applications and 
contribute towards the development of T CR -b ased i mm unotherapies.

CD8+ T cells play a central role in the immune response against viral 
infections, cancers and the development of autoimmunity, as differen-
tiated cytotoxic T lymphocytes can kill target cells1–5. T cell receptors 
(TCRs) composed of multiple protein chains can trigger the activa-
tion of CD8+ T cells by recognizing antigens presented by major his-
tocompatibility complex (MHC) class I molecules6,7. The accurate and 
high-throughput identification of TCR sequences that bind to specific 
antigens is increasingly critical for understanding the mechanisms of 

T cell immune responses and underpinning the development of effec-
tive TCR-based immunotherapies8. In addition, binding specificities 
of TCR repertoires can provide an alternative to cancer diagnostic 
markers9 and to monitor the effectiveness of tumour treatment or 
vaccination10,11.

Recent advances in single-cell sequencing techniques enable 
the pairing of TCRαβ transcripts through fluorescence-activated cell 
sorting isolation or emulsion-based methods12. Despite the lower 

Received: 11 June 2024

Accepted: 19 September 2024

Published online: xx xx xxxx

 Check for updates

A full list of affiliations appears at the end of the paper.  e-mail: hyou@sjtu.edu.cn; Jiangning.Song@monash.edu

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-024-00913-8
http://orcid.org/0000-0002-6444-292X
http://orcid.org/0000-0001-9587-1965
http://orcid.org/0000-0001-8768-0050
http://orcid.org/0000-0002-9746-3719
http://orcid.org/0000-0003-0532-8331
http://orcid.org/0000-0002-2020-7522
http://orcid.org/0000-0001-9439-1660
http://orcid.org/0000-0001-8031-9086
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-024-00913-8&domain=pdf
mailto:hyou@sjtu.edu.cn
mailto:Jiangning.Song@monash.edu


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-024-00913-8

development of TCR-based immunotherapies for infectious diseases 
and cancers.

Results
Overview of the EPACT methodology
We employed a divide-and-conquer approach to develop the architec-
ture of EPACT, concentrating on the interaction between paired TCRαβ 
chains from CD8+ T cells and their cognate pMHC targets (Fig. 1a,b and 
Supplementary Fig. 1). We first pretrained separate protein language 
models48 that reconstructed masked amino acids and Atchley factors49 
to yield contextualized embeddings for CD8+ T cell epitopes and recep-
tors. We employed residual convolutional blocks50 to encode the evo-
lutionary and biophysical properties of MHC allomorphs, as MHC class 
I molecules present the epitopes to TCR on the cell surface51. We then 
combined the MHC features with prior peptide embeddings to train a 
pMHC binding model on binding affinity data collected from NetMH-
Cpan v.4.1 (ref. 52). The predicted normalized half-maximal inhibitory 
concentration (IC50) values of test pMHC pairs were highly correlated 
with the experimental measures across multiple human leukocyte 
antigen (HLA) gene types (Fig. 2a and Extended Data Fig. 1a), with an 
overall Pearson correlation coefficient (PCC) of 0.822. We also assessed 
an epitope presentation model using an independent test set of Big-
MHC53. Our intermediate model significantly improved the prediction 
of presented MHC class I ligands (Fig. 2b and Extended Data Fig. 1b–d), 
achieving a mean area under the precision-recall curve (AUPR) of 0.901 
when stratifying by MHC alleles (BigMHC AUPR: 0.878, NetMHCpan 
v.4.1 AUPR: 0.831).

Leveraging the robust representations derived from TCR and 
pMHC pretrained models, EPACT generalized to predict TCR–anti-
gen recognition via transfer learning (Fig. 1c). We prepared a pool of 
epitope-specific TCRs and devised a contrastive learning module to 
connect the TCR and pMHC subnetworks (Fig. 1d): (1) for each TCR–
pMHC pair with known binding specificity, ‘non-binding’ TCRs were 
randomly sampled from the TCR pool; (2) TCR and pMHC pretrained 
embeddings were processed by paralleled self-attention layers and 
convolutional blocks; (3) classification embeddings of TCR and pMHC 
were subsequently projected into a co-embedding space; 4) a super-
vised contrastive loss54 was calculated to shorten the cosine distance 
between the embeddings of pMHC anchor and binding TCR compared 
with non-binding ones. The classification embeddings were also con-
catenated to output a pan-epitope binding score ranging from 0 to 1 by 
a multilayer perceptron (MLP). In addition to predicting TCR–pMHC 
binding specificity, we also fine-tuned EPACT to characterize the resi-
due–residue interactions between CDR loops and the epitope. The 
outer product of the residue-level embeddings of TCR and epitope 
sequences was further fed in a two-dimensional convolutional layer 
to simultaneously predict distance matrix and contact residue pairs.

EPACT achieves SOTA performance to predict TCR specificity
We adopted two evaluation settings to mimic real-world applications of 
the TCR–pMHC binding specificity model by predicting (1) the binding 
TCRs for unseen epitopes and (2) the binding specificity of a distinct 
TCR population from the VDJdb database55. The hypervariable CDR3 
loops play a crucial role in antigen recognition7, so we only considered 
CDR3αβ sequences at first, resulting in a training dataset of 11,053 
TCR–pMHC binding pairs. EPACT substantially enhanced model per-
formance on unseen epitopes with paired CDR3αβ and pMHC inputs 
compared to other deep-learning methods (Fig. 2c,d). Although other 
methods (ERGO-II30, NetTCR v.2.0 (ref. 27) and TULIP-TCR37) struggled 
with surpassing random predictions, EPACT obtained an average AUPR 
of 0.227. We then assessed the model generalizability on 1,147 VDJdb 
unique TCR–pMHC pairs (Fig. 2e,f). EPACT reached a median AUPR of 
0.430 (95% confidence interval (CI), 0.402–0.457) by 1,000 bootstrap 
iterations, and the second-highest-performing method, NetTCR v.2.0, 
obtained a median AUPR of 0.355 (95% CI, 0.328–0.383).

throughput than bulk TCR sequencing methods, capturing paired 
chains can promote the characterization of TCR diversity and func-
tion. Various experimental approaches, such as tetramer-associated 
TCR sequencing13 and microfluidic antigen-TCR engagement 
sequencing14, were developed for mapping TCRαβ sequences to anti-
gen recognition specificity at the single-cell level. However, these 
experimental methods have several shortcomings, including high 
cost, technical complexity and limited epitope coverage12. On the 
other hand, TCR cross-reactivity15, where one TCR can bind to multiple 
peptide–MHC (pMHC) complexes, presents therapeutic opportuni-
ties to devise T cells targeting various tumour antigens16, yet it can 
provoke unwanted immune responses to off-target self-antigens17. 
Molecular mimicry between activated peptides and the plasticity of 
complementarity-determining regions (CDRs) can jointly contribute 
to TCR cross-reactivity18,19. Still, the availability of the TCR–pMHC 
complex crystal structures remains limited and heavily biased towards 
certain MHC allomorphs.

A multitude of computational approaches pinpoint a promising 
direction to tackle the issue of TCR–antigen binding specificity via 
deep-learning frameworks20. Existing methods comprise three major 
categories—(1) TCR representation models (GLIPH2 (ref. 21), DeepTCR22,  
TCRdist3 (ref. 23), TCR-BERT24), (2) peptide-specific TCR binding mod-
els (TCRex25, TCRGP26, NetTCR v.2.0 (ref. 27), TCRAI28, MixTCRpred29) 
and (3) pan-specific TCR binding models (ERGO-II30, TITAN31, pMTnet32, 
TEIM-Seq33, PanPep34, STAPLER35, TAPIR36, TULIP-TCR37, NetTCR v.2.2 
(ref. 38), pMTnet-omni39)—but most of these approaches only consider 
the CDR3 loop of the TCRβ chain. Despite the dominant role of CDR3β 
in antigen recognition and TCR diversity, the TCRα chains also contact 
the pMHC complexes and contribute to the interaction, such that pair-
ing inputs of TCRαβ sequences should provide a more comprehensive 
view of TCR binding specificity40. Besides, pan-specific models that 
embed TCR and pMHC sequences simultaneously are designed to 
generalize to neoantigens or other less common peptides. However, 
few analyses include evaluation under zero-shot settings34, resulting in 
the overoptimistic performance of state-of-the-art (SOTA) predictors. 
Model capacities, especially those handling paired TCRαβ sequences, 
are still far from satisfactory20. Moreover, the lack of high-quality 
negative data and biased data generation also hinder AI applications in 
real-world scenarios41. As the TCR docking angle and mode on pMHC-I 
structures contributes to TCR specificity42, TEIM-Res first harnessed 
deep-learning techniques to predict the residue interactions between 
CDR3β and epitope sequence33 to decipher the underlying binding 
mechanisms. Nevertheless, other CDR loops, such as CDR1α and 
CDR3α, are also often involved in the structural interplay between 
TCR and epitope43, and no existing computational methods concern 
the in-depth analysis of TCR cross-reactivity.

Here we propose a deep-learning framework, epitope-anchored 
contrastive transfer learning (EPACT), for paired αβ T cell receptor–
antigen recognition. Leveraging the contextualized representations 
from the pretrained language model24,35 and the prior pMHC binding/
presentation embeddings32,39, EPACT achieves robust adaptivity to 
predict TCR–pMHC pairs through transfer learning. Meanwhile, super-
vised contrastive learning adopting epitope/pMHC anchors preserves 
the prediction specificity for a particular epitope and provides an inter-
pretable co-embedding space of TCRs and cognate pMHC targets44. We 
evaluate the model generalizability under two scenarios for binding 
specificity prediction: (1) predicting binding TCR for unseen epitopes 
and (2) adapting the model to distinct TCR populations. In addition to 
distinguishing binding TCRs of given pMHC complex, EPACT also exhib-
its capacity in illuminating the residue-level interactions within the 
CDR-epitope interface. We further apply EPACT to predict specificity of 
T cell clonotypes under diverse SARS-CoV-2 infection and vaccination 
conditions45 as well as structure-driven TCR cross-reactivity instances 
in autoimmune diseases46 and cancer immunotherapies47. Our analyses 
demonstrate the application potential of EPACT in accelerating the 
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The CDR1 and CDR2 loops encoded by human TRAV/TRBV genes 
frequently contact the surface of HLA molecules56. Nevertheless, incor-
porating CDR1 and CDR2 sequences enables the enhanced prediction 
performance due to additional co-evolutionary information57. There-
fore, we extracted both CDR1 and CDR2 loops from IMGT-annotated V 
genes58 and integrated them into the model. Several existing methods 
also provided models accommodating the inputs of all six CDR loops 
(NetTCR v.2.2 (ref. 38) and MixTCRpred29), CDR3 sequences plus cat-
egorical V and J genes (ERGO-II30) or full-length TCRαβ sequences 
(STAPLER35). The zero-shot performance on unseen peptides showed 
a minimal difference between the CDR3αβ and TCRαβ models (aver-
age area under the ROC curve (AUC), 0.597 versus 0.595; average 
AUPR, 0.218 versus 0.224; Fig. 3a). In contrast, the shared V genes 
with germline-encoded CDR1 and CDR2 loops across diverse TCR 
populations might contribute to performance improvements of the 
TCRαβ model (Fig. 3a,b). The median AUC by 1,000 bootstrap iterations 
increased from 0.665 (95% CI, 0.647–0.682) to 0.697 (95% CI, 0.680–
0.713, and the median AUPR rose from 0.382 (95% CI, 0.356–0.406) 
to 0.443 (95% CI, 0.414–0.469). EPACT also outperformed external 
methods, including ERGO-II, NetTCR v.2.2 and STAPLER (Extended 
Data Fig. 2a–d). We analysed the AUPRs for the epitopes with over ten 
binding TCRs in the test dataset. EPACT was the best predictor for 7 in 
24 epitope targets (Fig. 3c), including the Melan A epitope EAAGIG-
ILTV (AUPR, 0.948), Influenza M peptide GILGFVFTL (AUPR, 0.918) 
and SARS-CoV-2 nucleocapsid-derived peptide SPRWYFYYL (AUPR, 
0.623). We also conducted ablation studies with respect to EPACT’s 

essential modules, including the pretraining process, contrastive loss 
and feature encoding strategies (Extended Data Table 1). The presented 
benchmarking results illustrate that EPACT exhibited a capability of 
predicting αβ TCR–pMHC recognition for unseen epitopes and distinct 
TCR populations.

EPACT enables interpretable analysis of epitope-specific TCRs
Accurate identification of TCRs targeting particular tumour-associated 
or viral epitopes can help expedite vaccine development and 
T cell-based immunotherapies59–61. Previous unsupervised clustering 
methods, such as GLIPH2 (ref. 21) and TCRdist3 (ref. 23), mapped the 
input single or paired TCRs to unique clusters based on sequence fea-
tures and assigned specificities based on the sequence resemblance to 
TCRs with known targets. However, epitope-specific TCRs recognizing 
common pMHC complexes might not share high sequence similarity, 
especially in the hypervariable CDR3 loops, partly due to the inherent 
diversity of TCR repertoires and TCR degeneracy62.These properties 
present challenges for inferring the epitope-specific TCR clones within 
a TCR repertoire.

The contrastive learning module in EPACT mapped pMHC anchors 
and TCRs into an interpretable co-embedding space. We assumed 
that epitope-specific TCRs would be organized into clusters around 
the centroid representing the epitope targets. To illustrate the effec-
tiveness of EPACT for predicting epitope-specific TCRs, we chose 16 
SARS-CoV-2 epitopes with restricted MHC alleles. We constructed the 
SARS-CoV-2 epitope-specific TCR clusters and assigned the candidate 
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Fig. 1 | The divide-and-conquer framework of EPACT. a, Schematic diagram 
of TCR–pMHC recognition by CD8+ T cells. b, The model backbone of EPACT 
consists of pretrained language models for the peptide and TCR sequences, a 
pMHC model and a contrastive learning module. The pMHC model is pretrained 
to predict the pMHC binding affinity or epitope presentation. In the transfer 
learning stage, the epitope representations with fused MHC information and the 
sampled TCR embeddings are fed into the contrastive learning module together. 
c, Two related tasks for predicting TCR–pMHC recognition: binding specificity 
prediction, output a binding score to decide whether the input TCR–pMHC 

pairs can bind together (top); interaction conformation prediction, output 
residue-level distance matrices and contact matrices between CDR loops and the 
epitope (bottom). d, Contrastive learning module: TCR and pMHC classification 
embeddings are projected into a shared latent space after feature extraction by 
paralleled self-attention layer and residual convolutional blocks. The contrastive 
loss is computed according to the cosine distances between the pMHC anchor 
and binding or decoy TCRs in the co-embedding space. attn, attention layer; 
conv, convolutional layer. Panels a–c created with BioRender.com.
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Fig. 2 | EPACT boosts CD8+ TCR–pMHC recognition for unseen epitopes 
and distinct TCR populations. a, The experimental and predicted binding 
affinity (normalized IC50 values) of test pMHC pairs. b, Predicted AUPRs across 
36 MHC alleles evaluated on the test dataset of BigMHC. The P values were 
calculated by the two-sided Wilcoxon signed rank test to compare the pMHC 
model in this study with existing methods (BigMHC_EL, P = 0.014; NetMHCpan 
v.4.1, P = 1.6 × 10−7; MixMHCpred v.2.1, P = 7.0 × 10−13; TransPHLA, P < 2.2 × 10−16, 
n = 36). Box centre line, median; box limits, upper and lower quartiles; whiskers, 
1.5× interquartile range; points, data points; *P < 0.05, ****P < 0.0001. c,d, Bar 

plots of AUPRs (c) and PR curves (d) of the candidate methods in cross-validation 
(predicting for unseen epitopes). The bars represent the average AUPRs across 
obtained from five-fold cross-validation (n = 5), and the error bars indicate the 
standard deviations of AUPRs. The error bands (shaded regions) around the 
PR curves represents the standard errors of precisions. e,f, Bar plots of AUPRs 
(e) and PR curves (f) of the candidate methods in testing (predicting for VDJdb 
TCRs). The bars represent the median AUPRs by 1,000 bootstrap iterations, and 
the error bars indicate the 95% CIs.
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Fig. 3 | EPACT incorporates all CDR loops and interprets TCR specificity in 
co-embedding space. a, Bar plots showing EPACT’s performance in predicting 
binding specificity using different datasets that used CDR3αβ or all six CDR loops 
to represent TCR sequences. (left) AUC, (right) AUPR. Two evaluation settings: 
unseen epitopes (bar, mean; error bars, standard deviations; points, data points, 
n = 5) and VDJdb TCRs (bar, median; error bars, 95% CI; by 1,000 bootstrap 
iterations). b, Receiver-operating characteristic curve (left) and PR curve (right) 
to evaluate the testing performance of EPACT-CDR3 and EPACT on VDJdb TCR–
pMHC pairs. c, Comparison of AUPRs derived from ERGO-II, STAPLER, NetTCR 

v.2.2 and EPACT for 24 epitopes with over ten binding TCRs in the test dataset. 
The darker colour and larger size of the point indicate a higher AUPR. d, UMAP 
projections of the predicted SARS-CoV-2 epitope-specific TCR clusters. The TCR 
embeddings were derived from the co-embedding space via contrastive learning. 
e, Sequence motifs of CDR3α and CDR3β representing the epitope-specific TCRs 
for two spike protein epitopes: (top) YLQPRTFLL, (bottom) NYNYLYRLF. f, UMAP 
projections of five spike epitope targets and experimental binding TCRs (cross, 
pMHC anchor; points, binding TCRs or decoys TCRs).
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TCRs to the nearest pMHC anchors, setting the maximum cosine dis-
tance from the anchor to 0.4 for high specificity in each TCR cluster 
(Fig. 3d). The predicted epitope-specific TCRs for different epitope 
presented by HLA-A*01:01, HLA-B*15:01 and HLA-B*44:02 were close in 
Uniform Manifold Approximation and Projection (UMAP) space63. This 
probably implies the impact on TCR–pMHC recognition from the HLA 
genotypes64. Next, we inspected the amino acid preferences of CDR3αβ 
sequences responding to five 9-mer spike protein epitopes (LTDEMI-
AQY, YLQTRPFLL, NYNYLYRLF, QYIKWPWYI and NQKLIKNQF) (Fig. 3e 
and Supplementary Fig. 2). The regions of the spike-epitope-specific 
CDR3αβ loops that primarily contacted the epitope were highly diverse 
despite the conserved regions at the N and C terminus65. Nevertheless, 
glycine (G) and polar amino acids, such as asparagine (N), serine (S) and 
threonine (T), were more likely to occur at the core positions of CDR3αβ 
sequences. To confirm the representativeness of the epitope-specific 
clusters, we compared the distribution of the spike and non-spike 
epitope targets with their known binding TCRs (Fig. 3f and Supplemen-
tary Fig. 3). The UMAP projections of TCRs with experimental specific-
ity also gathered around the cognate pMHC targets and appeared to 
form cluster shapes similar to the predicted ones.

EPACT aligns with T cell responses to SARS-CoV-2 exposure
We further investigated the application potential of EPACT to clini-
cal cohorts through a longitudinal study45. Reference 45 profiled 
the SARS-CoV-2-responsive CD8+ T cells from samples that under-
went distinct antigen exposure through single-cell RNA sequenc-
ing and single-cell TCR sequencing. Thus, we constructed an 
external TCR–pMHC recognition dataset comprising 3,540 unseen 
SARS-CoV-2-responsive TCR clonotypes and five times non-binding 
TCRs from healthy human samples. We evaluated the model gener-
alizability of STAPLER35, NetTCR v.2.2 (ref. 38), EPACT and MixTCR-
pred29 to unseen TCR clones. To validate the necessity of CDR1 and 
CDR2 features, we also assessed the performance of EPACT trained 
on CDR3αβ data and NetTCR v.2.0 (ref. 27). EPACT substantially 
enhanced the model capacity (Fig. 4a,b), achieving a median AUPR of 
0.510 (95% CI, 0.494–0.525) across all SARS-CoV-2 epitopes by 1,000 
bootstrap iterations. Meanwhile, the second-best method, NetTCR 
v.2.2, achieved a median AUPR of 0.455 (CI, 0.438–0.471). The median 
AUPR of EPACT (0.426; 95% CI, 0.409–0.441) substantially decreased 
when solely using CDR3αβ features. We also examined the model 
performance for each SARS-CoV-2 epitope (Extended Data Fig. 3a). 
EPACT demonstrated a nearly equivalent predictor as MixTCRpred, 
an ensemble of peptide-specific models (average AUPR, 0.382 versus 
0.398). Given abundant training data, contrastive learning empowered 
EPACT with high specificity44 so that it outperformed MixTCRpred in 
predicting TCRs binding to two immunodominant SARS-CoV-2 epitopes 
(TTDPSFLGRY AUPR, 0.666 versus 0.605; YLQPRTFLL AUPR, 0.765 
versus 0.753). In addition, EPACT delivered remarkable advantages 
over other pan-specific models, resulting in higher AUPRs for 12 in 14 
epitope targets compared to NetTCR v.2.2 (Fig. 4c).

We next applied EPACT to the entire SARS-CoV-2 epitope-specific 
CD8+ T cell repertoires (4,471 unique TCR clonotypes) in the cohort 

to explore whether EPACT could detect the dynamics of T cell 
binding specificity and other phenotypes (Fig. 4d). We predicted 
antigen-specific clusters in the TCR repertoire by calculating the 
cosines distances between the projections of TCRs and pMHC anchors 
(Extended Data Fig. 3b,c). We calculated the enrichment ratios of vari-
ous SARS-CoV-2 epitope-specific TCRs across 16 clusters (Fig. 4e). The 
antigen-specific clusters derived from EPACT predictions were consist-
ent with experimental specificity of the majority45. For instance, five 
groups of spike-epitope-specific TCRs (targeting A01_LTD, A02_YLQ, 
A24_NYN, A24_QYI and B15_NQK) were highly enriched in the corre-
sponding clusters. The TCR clonotypes near the pMHC anchor rep-
resenting B44_AEV or B44_QEL exhibited ambiguous experimental 
specificity due to the limited data. We also inspected the gene expres-
sion profiles of the antigen-specific TCR clusters (Fig. 4f), including 
cytotoxic markers (NKG7, GNLY, GZMB, GZMH), memory markers (TCF7, 
IL7R, SELL) and exhaustion markers (CTLA4, PDCD1, TOX, TIGIT)66. 
Although the antigen-specific T cell population was composed of 
T cells with various functions and phenotypes45, we inferred several 
general characteristics of the T cell composition in the antigen-specific 
clusters. Spike-specific T cells corresponding to A02_YLQ and A24_NYN 
might maintain large numbers of T cells with durable cellular memory 
(upregulated expression of the memory markers). T cells targeting 
A02_LLY might accounted for a lower proportion of differentiated 
effector T cells (downregulated expression of cytotoxic markers).

We employed the percentage prediction rank of TCRs to reflect the 
relative binding strength and monitored the variation in binding rank 
and TCR clonal expansion upon diverse SARS-CoV-2 antigen exposure 
and vaccination. We compared the binding ranks of TCR–pMHC pairs 
from each sample across five categories, including infection only (inf), 
vaccinated only (vax2), infected followed by one/two doses of vaccine 
(inf-vax1/inf-vax2) and breakthrough infection after two doses of vac-
cine (vax-inf). Median binding ranks by stratifying donors and epitopes 
across categories revealed an increase in the binding strength with spike 
epitopes after vaccination compared to non-spike responses (Fig. 4g, 
top), especially in the inf-vax2 group (P = 0.033, Student’s t-test). We 
observed a similar trend in T cell clonal expansion that the clone sizes 
of spike-specific TCRs were greater than non-spike clones after vac-
cination (Fig. 4g, bottom), especially in the inf-vax2 group (P = 0.003, 
Student’s t-test). We further divided the SARS-CoV-2-responsive TCR 
clonotypes into ‘Strong binder’ (≥99.5%), ‘Weak binder’ (≥95%) and 
‘Others’. The strong binders with spike epitopes in the vaccination 
groups (inf-vax1 and inf-vax2) accounted for a larger proportion in 
the TCR repertoire (Extended Data Fig. 3d–f) compared to those tar-
geting non-spike epitopes. Our analyses aligned well with the experi-
mental findings that spike and non-spike T cell response varied with 
SARS-CoV-2 infections and vaccination45.

EPACT uncovers residue interactions between epitope and 
CDRs
Despite the complicated recognition mechanism between paired TCR 
chains and pMHC to trigger immune responses, the residual-level 
interaction undoubtedly plays an essential part in the formation and 

Fig. 4 | EPACT predicts epitope-specific CD8+ T cell responses to SARS-CoV-2 
infection and vaccination. a, Test AUPRs on unseen SARS-CoV-2 TCR–pMHC 
recognition dataset. Two methods receiving paired CDR3αβ inputs and another 
four based on additional V, J gene annotations were compared. The bars 
represent the median by 1,000 bootstrap iterations, and the error bars indicate 
the 95% CIs. b, PR curves of EPACT-CDR3, NetTCR v.2.2, EPACT and MixTCRpred. 
c, Pairwise comparison of test AUPRs for 14 epitope targets between two models 
using CDR1, CDR2 and CDR3 sequences (EPACT and NetTCR v.2.2). Five spike 
epitopes are annotated. d, Workflow to analyse SARS-CoV-2-responsive TCR 
clonotypes collected from ref. 45, including predicting antigen-specific clusters 
and TCR binding ranks. e, Heatmap of log enrichment ratios of TCRs with 
experimental specificity across predicted antigen-specific clusters. Darker 
colours along the diagonal indicate better alignment between prediction and 

experiment results. f, Bubble plots of normalized expressions and fractions of 
expressed cells of T cell mark genes in each antigen-specific TCR cluster defined 
by EPACT. The circle size denotes the percentage proportion of cells expressing a 
marker gene in each cluster, and the colour scale indicates the normalized gene 
expression across all clusters. g, Median binding rank (top) and log clonal 
expansion (bottom) of spike-specific and non-spike-specific TCRs across four 
groups upon diverse SARS-CoV-2 antigen exposure and vaccination, including 
‘inf’ (nspike = 18, nnon−spike = 37), ‘inf-vax1’ (nspike = 15, nnon−spike = 25), ‘inf-vax2’ 
(nspike = 35, nnon−spike = 48) and ‘vax2-inf’ (nspike = 9, nnon−spike = 16). Each point 
represents a triplet of a donor, an epitope and a group. The comparison between 
the spike-specific and non-spike-specific TCR responses was conducted using a 
two-sided Student’s t-test (P values are displayed above the violin plots). Panel  
d created with BioRender.com.
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stability of the TCR–pMHC complex7. Accurate identification of hydro-
gen bonds, salt bridges and van der Waals interactions between epitope 
and CDR loops can promote understanding of potential TCR degen-
eracy and cross-reactivity. We first cross-validated the fine-tuned 
EPACT and TEIM-Res33 on 148 public TCR–pMHC complex structures 
in STCRDab67. We also included a baseline method that output an 
average distance matrix. We ensembled the validation predictions 
of CDR3β–epitope interactions and calculated the PCC and root 
mean squared error (RMSE) for distance matrix prediction and AUC 
for contact site prediction (Fig. 5a). EPACT manifested a significant 
advance compared to the average baseline and TEIM-Res, achieving 
a median PCC of 0.953 (TEIM-Res, 0.942, P = 5 × 10−7, paired t-test), a 
median RMSE of 2.05 (TEIM-Res, 2.22, P = 2 × 10−6) and a median AUC 
of 0.966 (TEIM-Res, 0.958, P = 0.05). EPACT outperformed TEIM-Res 
in predicting CDR3β–epitope interactions for almost 70% of the avail-
able TCR–pMHC structures (Extended Data Fig. 4). Moreover, EPACT 
supported the investigation of interactions between epitope and other 
CDR loops than CDR3β. We chose to quantify the structural interplay 
between CDR1α, CDR3α and the epitope due to the involvement of 
CDR1α and CDR3α in van der Waals interactions with the epitope in 
76.4% and 86.5% of the structures. The cross-validation metrics for 
distance and contact predictions containing CDR1α and CDR3α amino 

acid residues were comparable to CDR3β-epitope predictions (Fig. 5b, 
average PCC, CDR1α: 0.928, CDR3α: 0.925, CDR3β: 0.942).

We applied the interaction model to interrogate the residue-level bind-
ing characteristics between a series of cross-reactive TCRs and their epitope 
targets. Reference 46performed peptide activation assays to determine 
the activated human or microbial peptides presented by HLA-B*27:05 for 
several TCRs with a disease-associated TRBV9–CDR3β motif. We predicted 
the distance and contact matrices for 60 activated TCR–peptide pairs to 
interpret the TCR cross-reactivity instances of the autoimmune disease. 
We selected the five most common peptides that activated the expanded 
TCR clonotypes in ankylosing spondylitis (AS) and acute anterior uveitis 
patients, including YEIHbac (LRVMMLAPF), PRPF3self (TRLALIAPK), GPER1self 
(GQMWLLAPR), RNASEH2Bself (GQVMVVAPR) and gspDbac (GKTELLAPF), to 
find shared properties of interaction conformation. The structure organiza-
tion of the peptides depicted a conserved TCR recognition mode emphasiz-
ing crucial contact sites at P4, P6 and P8 of the peptide46 (Fig. 5c). Contact 
scores predicted by EPACT identified the binding hotspots and structural 
motif (amino acid at P4 stretching out towards the CDR1α loop and the side 
chains at P6 and P8 facing the CDR3β) and captured the slight structural 
deviations (Fig. 5d). Methionine (M) at P4 obtained a higher contact score 
to the CDR1α loop than other amino acids, which coincided with structural 
evidence regarding side chain arrangement.
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Fig. 5 | EPACT successfully characterizes TCR–epitope interaction 
conformations. a, Box plots displaying the cross-validation PCC (left), RMSE 
(middle) and AUC (right) in predicting distance and contact matrix between 
CDR3β and epitope by average baseline, TEIM-Res and EPACT. Box centre line, 
median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; 
points, data points. The P values are derived from paired t-tests (PCC, RMSE, 
n = 148; AUC, n = 146). The median values are highlighted. b, Cross-validation PCC, 
AUC, RMSE in predicting distance and contact matrix between CDR1α, CDR3α 
or CDR3β and epitope (PCC, RMSE, n = 148; AUC, n = 146). Data are presented as 

mean ± standard deviation. Higher PCC and AUC stand for better performance, 
whereas RMSE is the opposite. c, Visualization of the representative TCR–pMHC 
binding interfaces for YEIHbac, PRPF3self, GPER1self, RNASEH2Bself and gspDbac. The 
TCR–pMHC complex structures were retrieved from the PDB database (PDB 
IDs 7N2Q, 7N2R and 7N2P) or predicted by the TCRmodel2 server (structures 
surrounded by grey dashed lines). d, Average contact scores to CDR1α (top) and 
CDR3β (bottom) loops of the amino acids along the epitope sequence predicted 
by EPACT. The error bars denote the standard deviations of contact scores across 
all activated AS or acute anterior uveitis TCRs.
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EPACT facilitates the illumination of TCR cross-reactivity
To further explore the underlying mechanism of TCR cross-reactivity, 
we applied EPACT to predict the interaction conformation between a 
cancer-reactive MEL8 TCR and three tumour-associated epitopes in the 
context of HLA-A*02:01 (ref. 47). The TCR clone was derived from a stage 
IV malignant melanoma patient with successful tumour-infiltrating 
lymphocyte therapy68. Reference 47attributed the multipronged 
T cell recognition of different cancer-specific or pan-cancer antigens 
to molecular mimicry according to the shared binding motif and struc-
tural hotspots. Because the crystal structure of MEL8 TCR–pMHC was 
not included in the training data, we directly utilized EPACT to quantify 
the residue–residue distance matrices and predict interchain contact 
residue pairs between CDR1α, CDR3α, CDR3β loops of MEL8 TCR and 
a 10-mer Melan A peptide EAAGIGILTV (Fig. 6a and Supplementary 
Fig. 4). EPACT demonstrated an outstanding prediction performance 
for the core regions of the CDR1α-epitope (PCC, 0.961; RMSE, 0.782; 
AUC, 1.00) and CDR3β-epitope (PCC, 0.728; RMSE, 1.71; AUC, 0.852) 
interfaces. We chose the residue pairs that probably formed van der 
Waals forces or hydrogen bonds (closest distance ≤4.0 Å) from CDR1α, 
CDR3β and the epitope and compared the experimental distances and 
predicted distances by EPACT (Fig. 6b,c and Supplementary Fig. 4). 

EPACT notably reduced the prediction errors for nearly all the residue 
pairs compared to TEIM-Res. Specifically, EPACT reconstructed the 
CDR3β binding mode (with minor prediction errors) around the central 
threonine (T), connecting four consecutive peptide amino acids (G4, 
I5, G6 and I7)47 by one hydrogen bond and van der Waals interactions. 
The consensus on core interacting sites also suggested the peptide 
motif contributing to the molecular mimicry.

We also simulated the amino acid preference among the 
tumour-associated peptides to activate the cross-reactive MEL8 TCR. 
Specifically, we curated a collection of 10-mer peptides presented by 
HLA-A*02:01 from the immune epitope database (IEDB)69 and predicted 
their binding scores with the MEL8 TCR. We then randomly chose 
2,000 peptide sequences and utilized a simulated annealing strategy 
to generate the peptide motif (Fig. 6d). After filtering the favourable 
point mutations for 500 iterations, the amino acid preference derived 
from the top 2% predictions successfully captured the G-I-G-I motif, 
similar to positional scanning in the experimental peptide library70,71. 
In silico simulation also implicitly suggests a possible position shift of 
the G-I-G-I motif, and the Melan AA2L peptide ELAGIGILTV might initiate 
MEL8 T cell activation even more effectively. The Melan A peptide, bone 
marrow stromal antigen 2 (BST2) peptide LLLGIGILVL and insulin-like 
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Fig. 6 | EPACT helps investigations of structure-driven TCR cross-reactivity. 
a, Residue–residue experimental (left) and predicted (middle) distance matrices 
and predicted contact scores (right) characterizing CDR1α-epitope (top) and 
CDR3β-epitope (bottom) interactions in the MEL8 TCR–Melan A peptide-
HLA-A*02:01 complex. The colour scales in the heatmap represent amino 
acid pairs from close to distant and contact scores from low to high. The core 
interaction regions are surrounded by the dashed lines. b, Bar plots comparing 
the experimental distances in PDB structures (PDB ID 7Q9B) and predicted 
distances by EPACT or TEIM-Res of nine interchain residue pairs from CDR3β and 

Melan A peptide. c, Visualization of the core interaction regions, including CDR1α 
(left) and CDR3β (right) loops of MEL8 TCR and Melan A peptide.  
d, Sequence motif (top) and heatmap (bottom) to display the positional amino 
acid preferences of peptides recognized by MEL8 TCR. e, Density plot to show 
the distribution of predicted binding scores to MEL8 TCR among the IEDB HLA-
A*02:01-presented peptides. The x axis is transformed into a log scale. f, Contact 
scores with Melan A (top), BST2 (middle) and IMP2 (bottom) peptide along the 
CDR3β sequence of MEL8 TCR. The dashed lines indicate the average contact 
level of the top 11.1% peptide binders along the CDR3β sequence.
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growth factor 2 mRNA-binding protein 2 (IMP2) peptide NLSALGIFST 
that responded to MEL8 TCR in activation assays obtained top binding 
ranks (top 0.2%, 0.3% and 11.1%) among the IEDB HLA-A*02:01 pre-
sented peptides (Fig. 6e). These epitope peptides also demonstrated 
elevated contact levels with the side regions of CDR1α and CDR3β 
loops compared to the average level of other top binders (Fig. 6f). 
In addition, we employed the validation prediction for interactions 
between another cross-reactive TCR (MEL5) and the BST2 peptide 
(Extended Data Fig. 5a–e) to affirm EPACT’s capacity to decipher the 
driving factors of molecular mimicry. Structural modelling results of 
MEL8-BST2 peptide and MEL8-IMP2 peptide interactions provided 
additional evidence for the EPACT-predicted interaction conforma-
tions (Supplementary Fig. 5).

Discussion
EPACT presents an interpretable framework to address the multiscale 
binding and interaction within the TCR–pMHC complex and adapt 
to emerging paired TCR sequencing data. It achieved SOTA perfor-
mance in predicting TCR binding specificity and residue-level contacts, 
leveraging the power of pretrained language models and contrastive 
learning. In-depth analyses were performed to illustrate the applica-
tion potential of EPACT, including identification of antigen-specific 
TCR clusters, estimation of SARS-CoV-2 spike/non-spike-specific T cell 
response and investigation of TCR cross-reactivity to recognize mul-
tiple tumour-associated antigens. In accordance with the sustained 
release of high-quality TCR binding specificity data and TCR–pMHC 
complex structures, EPACT is expected to be developed and explored 
as a more practical computational tool to accelerate the assessment of 
TCR-based immunotherapies and vaccines in diverse clinical studies.

Despite the advantages of EPACT over other methods in model 
generalizability and interpretability, it still can be improved to be 
applied to the real-world clinical scenario, especially for predicting the 
responsive TCRs for neoepitopes. The pretraining process is critical to 
capture the underlying representations of epitope and TCR sequences, 
and as such, a refined pretrained architecture72 may enhance model per-
formance. Because somatic recombination and genetic rearrangement 
can result in diverse and individualistic TCR populations73, a larger and 
more representative paired TCRαβ dataset comprising multiple cell 
types may expedite the representative learning of the TCR clonotypes74. 
For predicting TCR recognition for epitope targets with few binding 
TCRs, the commonly used negative sampling strategy might introduce 
biases that cannot be ignored41. Data scarcity of the less frequent HLA 
alleles might also influence the model predictions20. Although EPACT 
has already provided a version that accepts only CDR3αβ sequences 
to handle the missing V, J gene annotations, it cannot deal with other 
partial inputs, such as single TCR chain and multiple TCR alpha chains29 
or lacking MHC restriction. To obtain a more comprehensive under-
standing of the nature of T cells, several computational methods75–78 
integrated single-cell gene expression profiles and TCR sequences to 
enable the joint T cell analysis. Incorporating the single-cell profiles 
during the pretraining or transfer learning stage holds great potential 
for predicting TCR–pMHC interactions, identifying epitope-specific 
T cell clusters and providing deeper insights into T cell functions and 
phenotypes. It is also noteworthy to extend the interaction conforma-
tion predicted by EPACT to reconstruct the three-dimensional (3D) 
structure of the CDR-epitope interface79, which hopefully will provide 
a more intuitive view to model and interpret molecular mimicry and 
TCR cross-reactivity.

Methods
Datasets
Pretraining peptides and TCRαβ sequences. To prepare the pre-
training dataset of human peptides, we filtered the linear epitope 
sequences within the length of 8–25 amino acids of the positive T cell 
and MHC ligand assays in IEDB69. The pretraining corpus of paired 

TCRαβ sequences was obtained from the single-cell immune profil-
ing data of the healthy and tumour donors in 10X Genomics Datasets 
(https://www.10xgenomics.com/resources/datasets, Supplementary 
Table 1) and five previous studies adopted in STAPLER80–84. All unique 
TCR clonotypes with CDR3 sequences and V and J gene annotations 
were extracted for TCR alpha and beta chain. Next, 1,081,172 peptides 
and 180,888 TCR pairs were split into training, validation and test 
datasets according to the ratio of 0.8:0.1:0.1, respectively.

pMHC binding/presentation dataset. Binding affinity data between 
peptides and MHC was derived from the training data of NetMHCpan 
v.4.1 (ref. 52)(https://services.healthtech.dtu.dk/suppl/immunology/
NAR_NetMHCpan_NetMHCIIpan/), including 170,470 scaled and nor-
malized IC50 values spanning 111 HLA class I alleles:

f (IC50) = max (0, 1 − log5×105 (IC50))

We randomly selected 10% of the affinity data for testing and trained 
the model on the remaining dataset because the original paper did 
not provide any independent test data. The training and validation 
data for predicting epitope presentation consisted of 288,032 eluted 
ligands (ELs) and 16,739,285 negative pairs, respectively, across 149 
MHC alleles collected from BigMHC53 (https://data.mendeley.com/
datasets/dvmz6pkzvb/4). The evaluation data comprising 45,409 ELs 
and 900,592 negative pairs spanning 36 alleles were the same EL dataset 
used in the NetMHCpan v.4.1 study for benchmarking.

TCRαβ–pMHC recognition dataset. To construct a representative 
dataset for TCR–pMHC recognition, we combined the human TCR–
pMHC binding pairs with confirmed CD8 expression from multiple 
sources, including IEDB69, VDJdb55, McPAS-TCR85, TBAdb86, 10X87 
and ref. 64. We associate the TCR sequences with the T cell assays of 
specific epitopes and MHC alleles in IEDB (https://www.iedb.org/), 
which were downloaded on 31 August 2023 using the following query 
parameters: Homo sapiens, Reference type: journal article, linear 
epitope, MHC class I and T cell assays only. We also downloaded the 
human TCR–pMHC-I datasets with paired TCRαβ sequences from the 
VDJdb database (https://vdjdb.cdr3.net/) and the McPAS-TCR database 
(https://friedmanlab.weizmann.ac.il/McPAS-TCR/) and TBAdb from the 
Pan immune repertoire database (https://db.cngb.org/pird/), respec-
tively. The 10X dataset was obtained from over 150,000 CD8+ T cells 
of four healthy donors stained with 44 distinct pMHC multimers. We 
integrated the binarized matrices and TCR clonotype annotations. 
We assigned the TCR binding specificities according to the criteria 
of unique molecular identifier counts described in the application 
note ‘A new way of exploring immunity: linking highly multiplexed 
antigen recognition to immune repertoire and phenotype’. We also 
extracted the TCRαβ–pMHC binding pairs from CD8+ T cells of 28 
SARS-CoV-2-infected patients and 23 unexposed individuals stained 
with SARS-CoV-2-derived DNA-barcoded pMHC multimers in the sup-
plementary data file S3 of ref. 64 and then removed the TCR clono-
types annotated with multiple alpha chains. We concatenated the 
TCRαβ-pMHC binding pairs containing CDR3αβ sequences, V and  
J gene annotations, peptide sequences and MHC alleles from six original 
datasets into a combined dataset. The preprocessing of TCR–pMHC 
recognition data is presented in Supplementary Note 1. Statistics of 
the datasets used for training and validation are shown in the Sup-
plementary Table 2.

SARS-CoV-2 epitope-specific TCR clonotypes. The SARS-CoV- 
2-responsive TCR dataset was derived from a cohort of 55 individu-
als, including 16 SARS-CoV-2 negative participants, 30 participants 
recovered from mild disease, and 9 participants who experienced 
symptomatic breakthrough infection that shaped spike-specific and 
non-spike-specific immune responses of memory CD8+ T cells upon 
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infection and vaccination45. SARS-CoV-2 epitope-specific TCR clono-
types were identified and sequenced through DNA-barcoded MHC 
dextramers and single-cell TCR sequencing. This study assigned TCR 
recognition specificities for six spike protein epitopes and 12 non-spike 
epitopes presented on HLA alleles A*01:01, A*02:01, A*24:02, B*15:01 
and B*44:02 according to the dextramer barcode unique molecular 
identifier counts. We excluded two SARS-CoV-2 epitopes (A01_NTN and 
B44_VEN) from our analysis due to the minimal numbers of correspond-
ing T cells and finally obtained 4,471 TCR clonotypes. We removed the 
overlapped TCRαβ–pMHC pairs in our training dataset or the training 
data of MixTCRpred29. For external benchmarking, 3,540 TCR clono-
types with their experimentally assigned specificities were selected.

TCRαβ–pMHC complex structures. The crystal structures of the 
TCRαβ–pMHC complex were derived from the STCRDab67 database 
(https://opig.stats.ox.ac.uk/webapps/stcrdab-stcrpred). After remov-
ing the noisy ones (PDB IDs 6UZI, 7BYD) and duplicated TCRαβ–pMHC 
pairs, we constructed a structural dataset of 148 crystal structures. We 
extracted the coordinates of the heavy atoms of the amino acid residues 
and calculated the residue-level closest distances between CDR loops 
(CDR1α, CDR3α and CDR3β) and the epitope. Contact residue pairs 
were defined as those whose spatial distances (the distance between the 
nearest heavy atom pair from two amino acid residues) are within 5 Å, 
based on which the contact matrices were calculated and generated.

Epitope-anchored contrastive transfer learning
Model backbone. Under the transfer learning framework, paired 
TCRαβ sequences of the binding or non-binding TCRs were sampled 
and input into the TCR language model to obtain the pretrained TCR 
embeddings, respectively. At the same time, the representations for 
the pMHC complex were extracted from the pMHC binding predic-
tion model that took HLA molecules with their presented peptides as 
inputs. Model development of the pretrained model can be found in 
Supplementary Note 2. A multihead self-attention layer and two 1 × 1 
residual convolutional blocks were subsequently applied separately 
for further feature extraction from each sequence modality. Next, the 
fine-tuned embeddings of TCR and pMHC were fed into the contras-
tive co-embedding module or fused to provide model predictions for 
different downstream tasks.

Contrastive co-embedding module. The classification embeddings 
representing class tokens of TCR and pMHC were projected to a shared 
latent space by two MLP projectors. We designated one pMHC complex 
as an anchor in contrastive learning and then pulled the binding TCRs 
close to the anchor in the latent space while pushing the ‘non-binding’ 
ones away. Given one pMHC complex p, a set of binding (positive) TCRs 
Tpos and a bunch of decoy (negative) TCRs Tneg with their projected 
representations in a training batch, cosine similarity between the pMHC 
anchor and sampled TCRs were calculated. The cosine similarities 
between TCR–pMHC binding pairs were expected to be larger than the 
similarities between the shuffled negative pairs. The epitope-anchored 
supervised contrastive loss54 was calculated as follows:

ℒCL = − ∑
p∈Np

∑
i∈Tpos

log
exp(sim(u′p, v′i)/τ)

exp(sim(u′p, v′i)/τ) + ∑5
j∈Tneg

exp(sim(u′p, v′j)/τ)
,

where sim (⋅) denotes cosine similarity, u′ and v′ represent the projected 
embeddings of pMHC and TCR, respectively, τ  is the temperature factor 
of the loss function, Np is the collection of pMHC complexes in one 
batch, and five decoy TCRs are sampled each time.

Binding specificity prediction. We evaluated the model capacity to 
predict the binding specificities for unseen epitopes through five-fold 
cross-validation and assessed model generalizability on distinct TCR 
background populations from VDJdb. Epitopes in the training data 

were divided into groups by hierarchical clustering according to a 
minimum similarity score of 0.8 to achieve the zero-shot setting in 
cross-validation. The pairwise similarity score between epitope 
sequences ei and e j was defined as

s (ei, e j) =
SW (ei, e j)

√SW (ei, ei) SW (e j, e j)
,

where SW (⋅) denotes the local alignment score between two protein 
sequences using the Smith–Waterman algorithm88 and BLOSUM62 
substitution matrix. To predict TCR–pMHC binding specificities, clas-
sification embeddings of TCR and pMHC were concatenated and input 
into an MLP classifier and sigmoid activation function. In addition to 
minimizing the contrastive loss, the binary cross-entropy between 
predicted logits and labels was also included in the loss function to 
improve the adaptivity to unseen data:

ℒ = − ∑
p∈Np

∑
i∈Tpos

(log(h(up, vi)) +
5
∑

j∈Tneg

log(1 − h(up, v j))) + ℒCL,

where h (u, v) denotes the predicted logits given the embeddings of 
pMHC and TCR, and κ  is the weighting factor of the contrastive loss. 
Parameters of the pretrained epitope language model, TCR language 
model and MHC convolutional encoder were fixed. The cross-attention 
layer was fine-tuned to include TCR recognition information from MHC 
molecules. The AdamW optimizer with a learning rate of 2 × 10−4 was 
used to train the binding specificity model for 50 epochs, and an 
early-stopping strategy was employed to monitor the validation AUC.

Interaction conformation prediction. The residue-level interaction 
between CDR (CDR1α, CDR3α, CDR3β) sequences and epitope dem-
onstrated an essential signature for the binding conformation of the 
TCR–pMHC complex. Thus, the residue-level TCR and pMHC feature 
embeddings were integrated by outer product and subsequently fed 
into a 2D convolutional layer with a kernel size of 3 × 3. The output of 
the convolutional layer consisted of two channels: the first channel was 
followed by a ReLU activation function to predict the pairwise distance 
matrices between CDRs and epitope; the second used a sigmoid func-
tion to predict the contact probabilities between amino acid residue 
pairs. Five-fold cross-validation was performed in which highly similar 
epitopes were split into different folds (using the same strategy of 
epitope clustering in binding specificity prediction). A modified MSE 
loss divided by the distance between residues was utilized to reduce 
the influence on predictions from distant residue pairs, and binary 
cross-entropy loss was used for contact prediction. The weighting 
factors for interaction that involve CDR1α, CDR3α and CDR3β were set 
to 0.3, 0.6 and 1.0, respectively, after taking into consideration of the 
sequence length and critical role of CDR3β. The two parts of loss were 
summed and optimized using the AdamW optimizer with a learning rate 
of 2 × 10−4 for 100 epochs. The pretrained parameters were unfrozen 
in this stage, but the fine-tuning learning rate was ten times smaller.

All deep-learning models included in EPACT were implemented 
using PyTorch v.2.0.1 and trained on one NVIDIA GeForce RTX 3090 
GPU. Detailed model size and hyperparameters are provided in Sup-
plementary Table 3.

Clustering analysis of epitope-specific TCR clones
Representations of pMHC and TCR sequences were projected into 
the shared latent space, so we defined the embedding vector of a par-
ticular pMHC anchor as the centroid of the corresponding pMHC/
epitope-specific TCR clusters. Therefore, candidate TCRs could be 
assigned to the closest pMHC anchor according to their cosine similar-
ity. We also introduced a similarity threshold of 0.4 to maintain the high 
specificity of the epitope-specific TCR clusters. The pMHC anchors 
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representing 16 SARS-CoV-2 epitopes and the epitope-specific TCR 
clones were visualized in two-dimensional space after UMAP63 with the 
parameters n_neighbors = 10, min_dist = 0.1, and the metric is the cosine 
distance. We collected the CDR3αβ sequences in each SARS-CoV-2 
epitope-specific TCR cluster, performed multiple sequence alignment 
by MUSCLE89, and drew the CDR3 motifs, respectively. The positions in 
multiple sequence alignment where gaps occurred in over half of the 
aligned sequences were removed.

Analysis of SARS-CoV-2 epitope-specific T cell responses
As mentioned in the previous section, we predicted the SARS-CoV-2 
epitope specificity of the TCR clonotypes according to the cosine 
distances to the pMHC anchors, thus constructing potential 
antigen-specific T cell clusters. After comparing the ratio of experi-
mentally assigned epitope-specific TCRs in the predicted cluster and 
others, we calculated the enrichment ratios (ERs) in each cluster for 
each type of SARS-CoV-2 epitope-specific CD8+T cells:

ER (Ci,C′j) =
NCi∩C′j /NC′

j

(NCi
− NC′

j
) / (N − NC′

j
)
,

where Ci,C′j represent the set of TCR clonotypes in experimental and 
predicted epitope-specific cluster  and j, respectively, and N  refers 
to the number of all clonotypes or in a particular cluster. We calculated 
the percentage prediction rank of TCRs to validate the relationship 
between T cell specificity and SARS-CoV-2 antigen exposure. Twenty 
thousand TCR sequences were sampled from the T cell repertoires of 
healthy human samples to generate the background distribution of 
binding scores, and we located the percentile for the candidate TCR. 
We also collected the expression profiles of various subsets of memory 
CD8+ T cells and metadata, including donors, vaccination category and 
spike specificity from the original study45, to analyse the variation of 
binding specificity and clonal expansion upon diverse conditions.

Calculation of contact preference for cross-reactive TCRs
We predicted the residue–residue contact matrices between the 
cross-reactive AS-associated TCRs and their cognate peptides (viral 
peptides and self-peptides). The contact score of each amino acid 
residue along the peptide sequence was defined as the average of the 
top three contact probabilities with CDR1α or CDR3β residues. We also 
performed an in silico screening of cognate peptides for a particular 
TCR (MEL8/MEL5 TCR) by simulated annealing90 to investigate the 
consensus among binding peptides. First, 2,000 peptides were sam-
pled from all HLA-A*02:01-presented epitopes deposited in the IEDB 
database as the initial peptide population. We predicted their binding 
scores with the target TCR and then randomly mutated a single amino 
acid of each peptide. After predicting the TCR binding specificity of 
the mutated sequences, the mutations with increased binding scores 
were accepted. In contrast, part of the other mutations was retained 
according to the acceptance probability:

P (s, s′, t) = exp ( s − s′

T (t) ) ,

where s and s′ denote the binding scores of the original and mutated 
peptide sequences, and T(t) is the temperature of the tth iteration that 
declines proportionally. After 500 iterations, the top 2% of the final 
peptide population was extracted to render the sequence motif and 
heatmap representing the amino acid preferences of peptides for the 
cross-reactive TCRs.

Validation of interaction conformation between TCRs and 
TAAs
We chose the TCR–pMHC complexes containing MEL8/MEL5 TCR and 
cognate tumour-associated antigens from the PDB database (PDB IDs 
7Q9A and 7Q9B) to validate the residue-level predictions of pairwise 

distances and contact probabilities. Contact residues from CDR loops 
and the epitope involved in van der Waals interactions (≤4 Å) and hydro-
gen bonds (≤3.4 Å) were selected for performance evaluation and visu-
alized using PyMOL. We characterized the interaction conformations 
between MEL8/MEL5 TCR and all of the Melan A, BST2 and IMP2 peptides 
and compared them with the structural modelling results. The web server 
of TCRmodel2 (ref. 91) was employed to predict the 3D structures of TCR–
pMHC complexes (modelling statistics in the Supplementary Table 4). 
We also computed the contact scores along CDR1α and CDR3β sequences 
with the HLA-A02-presented peptides that possibly bind to MEL8/MEL5 
TCR (derived from binding specificity predictions by EPACT).

Statistical analyses
All statistical tests in the study were two-sided. The error bars in the bar 
plots represent 95% CIs unless otherwise stated. Performance bench-
marking metrics, including AUC, AUPR and RMSE, were calculated 
using the Python package scikit-learn v.1.3.0. UMAP was performed 
using the Python package umap-learn v.0.5.5. Local sequence alignment 
(Smith–Waterman algorithm) and hierarchical clustering of epitope 
sequences were performed using the Python packages biopython 
v.1.8.1 and scipy v.1.11.1, respectively. Sequence motifs were visual-
ized by the Python package logomaker v.0.8 using the colour scheme 
‘weblogo_protein’92. PyMOL v.2.4.0 was used to visualize the 3D struc-
ture of TCR–pMHC complexes.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this study are available via Zenodo at (https://doi.
org/10.5281/zenodo.10996144)93. The curated datasets of TCR–pMHC 
recognition are derived from IEDB69 (https://www.iedb.org/), VDJdb55 
(https://vdjdb.cdr3.net/), McPAS-TCR85 (https://friedmanlab.weiz-
mann.ac.il/McPAS-TCR/), TBAdb86 (https://db.cngb.org/pird/), 10X 
Genomics87 (https://www.10xgenomics.com/datasets) and Francis 
et al.64 (https://doi.org/10.1126/sciimmunol.abk3070). Detailed infor-
mation about the pretrained 10X Genomics Datasets is available in Sup-
plementary Table 1. The crystal structures of TCR–pMHC complexes 
with PDB IDs were downloaded from the STCRDab67 database (https://
opig.stats.ox.ac.uk/webapps/stcrdab-stcrpred/Browser) except for 
7Q9B, which was directly downloaded from the RCSB PDB database 
(https://www.rcsb.org/). Other structures listed in Supplementary 
Table 4 were derived from TCRmodel2 (ref. 91) (https://tcrmodel.ibbr.
umd.edu/) predictions. TCR sequences, experimental epitope specific-
ity, gene expression and other metadata of the SARS-CoV-2-responsive 
T cells were obtained from the original study45 (https://doi.org/10.1038/
s41590-022-01184-4). Cross-reactive TCRs and activated peptides in the 
context of HLA-B*27:05 were obtained from the original study46 (https://
doi.org/10.1038/s41586-022-05501-7). Binding hotspots between 
MEL8 or MEL5 TCR and corresponding pMHC complexes were derived 
from the original study47 (https://doi.org/10.1016/j.cell.2023.06.020). 
Source data are provided with this paper.

Code availability
The source code and model weights of EPACT are available via GitHub at 
https://github.com/zhangyumeng1sjtu/EPACT and Zenodo at https://
zenodo.org/records/10996144 (ref. 93).
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Extended Data Fig. 1 | Performance of the pMHC binding affinity and 
epitope presentation model. a, The experimental and predicted binding 
affinity (normalized IC50 values) of tested peptide-MHC pairs by stratifying 
HLA subtypes. b, Performance of our epitope presentation model and existing 

methods (BigMHC, NetMHCpan-4.1, MixMHCpred-2.1 and TransPHLA) on each 
test HLA molecule. Pairwise comparisons between the predicted AUPR of our 
epitope presentation model and c, BigMHC and d, NetMHCpan-4.1.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Benchmarking results on paired TCRαβ binding 
specificity data. a, Bar plots of AUCs and AUPRs, and b, ROC curves and 
precision-recall curves of the candidate TCRαβ models on cross-validation 
(that is, prediction of unseen epitopes). The bars represent the mean across five 
folds (n=5) and the error bars indicate the standard deviations. The error bands 

(shaded regions) around the curves represent the standard errors of mean TPRs 
and precisions. c, Bar plots of AUCs and AUPRs, and d, ROC curves and precision-
recall curves of the candidate TCRαβ models on the independent test (predicting 
for VDJdb TCRs). The bars represent the median by 1000 bootstrap iterations and 
the error bars indicate the 95% confidence intervals.
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Extended Data Fig. 3 | Interpretable prediction and analysis of SARS-CoV-2 
responsive TCR clonotypes. a, Performance comparison in terms of AUPRs 
derived from MixTCRpred, STAPLER, NetTCR-2.0, NetTCR-2.2, and EPACT for 14 
SARS-CoV-2 epitopes. The darker color and larger size of the point indicate a 
higher AUPR. b, UMAP projection of the predicted SARS-CoV-2 epitope-specific 
TCR clusters in the unseen SARS-CoV-2-responsive TCR dataset. c, UMAP 
projections of five spike epitope targets and experimental binding TCRs (cross, 
pMHC anchor; points, binding TCRs or decoys TCRs). Proportions of predicted 

strong binders (rank≥99.5%) and weak binders (rank≥95%) d, targeting each 
SARS-CoV-2 epitope and e. in spike-specific or non-spike-specific TCRs across 
different categories of SARS-CoV-2 infection and vaccination. f. Bar plots showing 
the spike-specific and non-spike-specific log clonal expansion of the strong and 
weak TCR binders (‘Others’, nspike=615, nnon−spike=2036, ‘Weak Binder’, nspike=327, 
nnon−spike=921, ‘Strong Binder’, nspike=218, nnon−spike=354). Data are presented as 
mean ± standard error of mean (s.e.m.).
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Extended Data Fig. 4 | Pairwise comparison of predicted CDR3β-epitope 
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Extended Data Fig. 5 | EPACT identifies the recognition between three 
tumour-associated epitopes and MEL5 TCR. a, Residue-residue experimental 
(left) and predicted (middle) distance matrices and predicted contact scores 
(right) characterizing CDR1α-epitope (top), CDR3α-epitope (middle), and 
CDR3β-epitope (bottom) interactions in the MEL5 TCR-Melan A peptide-
HLA-A*02:01 complex. The predicted interactions were derived from validation 
test. The color scales in the heatmap represent amino acid pairs from close 
to distant and contact scores from low to high. The core interaction regions 
are surrounded by the dashed lines. b, Bar plots to compare the experimental 

distances in PDB structures (PDB: 7Q9A) and predicted distances by EPACT of the 
inter-chain contact residue pairs (≤4Å) from CDR1α/CDR3α/CDR3β and Melan A 
peptide. c, Visualization of the core interaction regions, including CDR1α (left), 
CDR3α (middle), and CDR3β (right) loops of MEL5 TCR and Melan A peptide. 
d, Sequence motif (top) and heatmap (bottom) to display the positional amino 
acid preferences of peptides recognized by MEL5 TCR. e, Density plots showing 
the distribution of predicted binding scores to MEL5 TCR among the IEDB HLA-
A*02:01-presented peptides. The x-axis is transformed into a log scale.
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Extended Data Table 1 | Benchmarking results and ablation study of EPACT
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