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Understanding the mechanisms of T cell antigen recognition that

underpin adaptive immune responses is critical for developing vaccines,
immunotherapies and treatments against autoimmune diseases. Despite
extensive research efforts, accurate prediction of T cell receptor (TCR)-
antigen binding pairs remains a great challenge due to the vast diversity and
cross-reactivity of TCRs. Here we propose a deep-learning-based framework
termed epitope-anchored contrastive transfer learning (EPACT) tailored

to paired human CD8" TCRs. Harnessing the pretrained representations

and co-embeddings of peptide-major histocompatibility complex (pMHC)
and TCR, EPACT demonstrated generalizability in predicting binding
specificity for unseen epitopes and distinct TCR repertoires. Contrastive
learning enabled highly precise predictions forimmunodominant epitopes
and interpretable analysis of epitope-specific T cells. We applied EPACT to
SARS-CoV-2-responsive T cells, and the predicted binding strength aligned
well with the surge in spike-specificimmune responses after vaccination. We
further fine-tuned EPACT on structural data to decipher the residue-level
interactions involved in TCR-antigen recognition. EPACT was capable of
quantifying interchain distance matrices and identifying contact residues,
corroborating the presence of TCR cross-reactivity across multiple
tumour-associated antigens. Together, EPACT can serve as a useful artificial
intelligence approach with important potential in practical applications and
contribute towards the development of TCR-based immunotherapies.

CDS8'T cells play a central role in the immune response against viral
infections, cancers and the development of autoimmunity, as differen-
tiated cytotoxic T lymphocytes can kill target cells'. T cell receptors
(TCRs) composed of multiple protein chains can trigger the activa-
tion of CD8" T cells by recognizing antigens presented by major his-
tocompatibility complex (MHC) class I molecules®’. The accurate and
high-throughputidentification of TCR sequences that bind to specific
antigensisincreasingly critical for understanding the mechanisms of

T cellimmune responses and underpinning the development of effec-
tive TCR-based immunotherapies®. In addition, binding specificities
of TCR repertoires can provide an alternative to cancer diagnostic
markers’ and to monitor the effectiveness of tumour treatment or
vaccination'®".

Recent advances in single-cell sequencing techniques enable
the pairing of TCRa transcripts through fluorescence-activated cell
sorting isolation or emulsion-based methods'. Despite the lower
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throughput than bulk TCR sequencing methods, capturing paired
chains can promote the characterization of TCR diversity and func-
tion. Various experimental approaches, such as tetramer-associated
TCR sequencing” and microfluidic antigen-TCR engagement
sequencing', were developed for mapping TCRaf3 sequences to anti-
gen recognition specificity at the single-cell level. However, these
experimental methods have several shortcomings, including high
cost, technical complexity and limited epitope coverage™. On the
other hand, TCR cross-reactivity”, where one TCR can bind to multiple
peptide-MHC (pMHC) complexes, presents therapeutic opportuni-
ties to devise T cells targeting various tumour antigens', yet it can
provoke unwanted immune responses to off-target self-antigens”.
Molecular mimicry between activated peptides and the plasticity of
complementarity-determining regions (CDRs) canjointly contribute
to TCR cross-reactivity’®". Still, the availability of the TCR-pMHC
complexcrystal structures remains limited and heavily biased towards
certain MHC allomorphs.

A multitude of computational approaches pinpoint a promising
direction to tackle the issue of TCR-antigen binding specificity via
deep-learning frameworks®. Existing methods comprise three major
categories—(1) TCRrepresentation models (GLIPH2 (ref. 21), DeepTCR?,
TCRdist3 (ref. 23), TCR-BERT*), (2) peptide-specific TCR binding mod-
els (TCRex*, TCRGP?*, NetTCR v.2.0 (ref. 27), TCRAI*®, MixTCRpred®)
and (3) pan-specific TCR binding models (ERGO-II*°, TITAN*, pMTnet™,
TEIM-Seq™®, PanPep**, STAPLER®, TAPIR*®, TULIP-TCR*, NetTCR v.2.2
(ref.38), pMTnet-omni*’)—but most of these approaches only consider
the CDR3 loop of the TCRp chain. Despite the dominant role of CDR3(3
inantigen recognition and TCR diversity, the TCRa chains also contact
the pMHC complexes and contribute to theinteraction, such that pair-
inginputs of TCRaf sequences should provide amore comprehensive
view of TCR binding specificity*’. Besides, pan-specific models that
embed TCR and pMHC sequences simultaneously are designed to
generalize to neoantigens or other less common peptides. However,
fewanalyses include evaluation under zero-shot settings®, resulting in
the overoptimistic performance of state-of-the-art (SOTA) predictors.
Model capacities, especially those handling paired TCRaf3 sequences,
are still far from satisfactory®’. Moreover, the lack of high-quality
negative dataand biased data generation also hinder Al applicationsin
real-world scenarios*. As the TCR docking angle and mode on pMHC-I
structures contributes to TCR specificity*’, TEIM-Res first harnessed
deep-learning techniques to predict the residue interactions between
CDR3p and epitope sequence™ to decipher the underlying binding
mechanisms. Nevertheless, other CDR loops, such as CDR1a and
CDR3q, are also often involved in the structural interplay between
TCR and epitope®, and no existing computational methods concern
thein-depth analysis of TCR cross-reactivity.

Here we propose a deep-learning framework, epitope-anchored
contrastive transfer learning (EPACT), for paired o3 T cell receptor—
antigen recognition. Leveraging the contextualized representations
from the pretrained language model*** and the prior pMHC binding/
presentation embeddings®>*°, EPACT achieves robust adaptivity to
predict TCR-pMHC pairs through transfer learning. Meanwhile, super-
vised contrastive learning adopting epitope/pMHC anchors preserves
the prediction specificity foraparticular epitope and provides aninter-
pretable co-embedding space of TCRs and cognate pMHC targets*‘. We
evaluate the model generalizability under two scenarios for binding
specificity prediction: (1) predicting binding TCR for unseen epitopes
and (2) adapting the model todistinct TCR populations. Inaddition to
distinguishing binding TCRs of given pMHC complex, EPACT also exhib-
its capacity in illuminating the residue-level interactions within the
CDR-epitopeinterface. We further apply EPACT to predict specificity of
T cellclonotypes under diverse SARS-CoV-2 infection and vaccination
conditions® as well as structure-driven TCR cross-reactivity instances
inautoimmune diseases* and cancerimmunotherapies®. Our analyses
demonstrate the application potential of EPACT in accelerating the

development of TCR-based immunotherapies for infectious diseases
and cancers.

Results

Overview of the EPACT methodology

We employed adivide-and-conquer approach to develop the architec-
ture of EPACT, concentrating on the interaction between paired TCRaf3
chainsfrom CD8"T cells and their cognate pMHC targets (Fig.1a,b and
Supplementary Fig. 1). We first pretrained separate protein language
models* that reconstructed masked amino acids and Atchley factors®
toyield contextualized embeddings for CD8' T cell epitopes and recep-
tors. We employed residual convolutional blocks™ to encode the evo-
lutionary and biophysical properties of MHC allomorphs, as MHC class
Imolecules present the epitopes to TCR on the cell surface®. We then
combined the MHC features with prior peptide embeddings totraina
pMHC binding model on binding affinity data collected from NetMH-
Cpanv.4.1(ref. 52). The predicted normalized half-maximal inhibitory
concentration (IC,) values of test pMHC pairs were highly correlated
with the experimental measures across multiple human leukocyte
antigen (HLA) gene types (Fig. 2a and Extended Data Fig. 1a), with an
overall Pearson correlation coefficient (PCC) of 0.822. We also assessed
an epitope presentation model using an independent test set of Big-
MHC®, Our intermediate modelssignificantly improved the prediction
of presented MHC class 1ligands (Fig. 2b and Extended Data Fig.1b-d),
achievingamean area under the precision-recall curve (AUPR) of 0.901
when stratifying by MHC alleles (BigMHC AUPR: 0.878, NetMHCpan
v.4.1AUPR: 0.831).

Leveraging the robust representations derived from TCR and
PMHC pretrained models, EPACT generalized to predict TCR-anti-
gen recognition via transfer learning (Fig. 1c). We prepared a pool of
epitope-specific TCRs and devised a contrastive learning module to
connect the TCR and pMHC subnetworks (Fig. 1d): (1) for each TCR-
PMHC pair with known binding specificity, ‘non-binding’ TCRs were
randomly sampled from the TCR pool; (2) TCR and pMHC pretrained
embeddings were processed by paralleled self-attention layers and
convolutional blocks; (3) classification embeddings of TCR and pMHC
were subsequently projected into a co-embedding space; 4) a super-
vised contrastive loss** was calculated to shorten the cosine distance
between the embeddings of pMHC anchor and binding TCR compared
with non-binding ones. The classification embeddings were also con-
catenated to output a pan-epitope binding score ranging from 0 to1by
amultilayer perceptron (MLP). In addition to predicting TCR-pMHC
binding specificity, we also fine-tuned EPACT to characterize the resi-
due-residue interactions between CDR loops and the epitope. The
outer product of the residue-level embeddings of TCR and epitope
sequences was further fed in a two-dimensional convolutional layer
to simultaneously predict distance matrix and contact residue pairs.

EPACT achieves SOTA performance to predict TCR specificity
We adopted two evaluation settings to mimic real-world applications of
the TCR-pMHC binding specificity model by predicting (1) the binding
TCRs for unseen epitopes and (2) the binding specificity of a distinct
TCR population from the VDJdb database®. The hypervariable CDR3
loops play a crucial role inantigen recognition’, so we only considered
CDR3ap sequences at first, resulting in a training dataset of 11,053
TCR-pMHC binding pairs. EPACT substantially enhanced model per-
formance on unseen epitopes with paired CDR3a3 and pMHC inputs
compared to other deep-learning methods (Fig. 2c,d). Although other
methods (ERGO-II*°, NetTCRv.2.0 (ref. 27) and TULIP-TCR¥) struggled
withsurpassing random predictions, EPACT obtained an average AUPR
of 0.227. We then assessed the model generalizability on 1,147 VDJdb
unique TCR-pMHC pairs (Fig. 2e,f). EPACT reached amedian AUPR of
0.430 (95% confidence interval (Cl), 0.402-0.457) by 1,000 bootstrap
iterations, and the second-highest-performing method, NetTCRv.2.0,
obtained amedian AUPR of 0.355 (95% Cl, 0.328-0.383).
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Fig.1|The divide-and-conquer framework of EPACT. a, Schematic diagram

of TCR-pMHC recognition by CD8 T cells. b, The model backbone of EPACT
consists of pretrained language models for the peptide and TCR sequences, a
pMHC model and a contrastive learning module. The pMHC model s pretrained
to predict the pMHC binding affinity or epitope presentation. In the transfer
learning stage, the epitope representations with fused MHC information and the
sampled TCR embeddings are fed into the contrastive learning module together.
¢, Two related tasks for predicting TCR-pMHC recognition: binding specificity
prediction, output a binding score to decide whether the input TCR-pMHC

pairs can bind together (top); interaction conformation prediction, output
residue-level distance matrices and contact matrices between CDR loops and the
epitope (bottom). d, Contrastive learning module: TCR and pMHC classification
embeddings are projected into ashared latent space after feature extraction by
paralleled self-attention layer and residual convolutional blocks. The contrastive
loss is computed according to the cosine distances between the pMHC anchor
and binding or decoy TCRsin the co-embedding space. attn, attention layer;
conv, convolutional layer. Panels a-c created with BioRender.com.

The CDR1and CDR2 loops encoded by human TRAV/TRBV genes
frequently contact the surface of HLA molecules®. Nevertheless, incor-
porating CDR1and CDR2sequences enables the enhanced prediction
performance due to additional co-evolutionary information®”. There-
fore, we extracted both CDR1and CDR2loops from IMGT-annotated V
genes*® and integrated theminto the model. Several existing methods
also provided models accommodating the inputs of all six CDR loops
(NetTCRv.2.2 (ref. 38) and MixTCRpred®), CDR3 sequences plus cat-
egorical V and J genes (ERGO-1I’°) or full-length TCRaf sequences
(STAPLER¥). The zero-shot performance on unseen peptides showed
a minimal difference between the CDR3a3 and TCRaf3 models (aver-
age area under the ROC curve (AUC), 0.597 versus 0.595; average
AUPR, 0.218 versus 0.224; Fig. 3a). In contrast, the shared V genes
with germline-encoded CDR1 and CDR2 loops across diverse TCR
populations might contribute to performance improvements of the
TCRaf model (Fig.3a,b). The median AUC by 1,000 bootstrap iterations
increased from 0.665 (95% Cl, 0.647-0.682) to 0.697 (95% CI, 0.680-
0.713, and the median AUPR rose from 0.382 (95% Cl, 0.356-0.406)
to 0.443 (95% Cl, 0.414-0.469). EPACT also outperformed external
methods, including ERGO-II, NetTCR v.2.2 and STAPLER (Extended
DataFig. 2a-d). We analysed the AUPRs for the epitopes with over ten
binding TCRsin the test dataset. EPACT was the best predictor for 7in
24 epitope targets (Fig. 3¢), including the Melan A epitope EAAGIG-
ILTV (AUPR, 0.948), Influenza M peptide GILGFVFTL (AUPR, 0.918)
and SARS-CoV-2 nucleocapsid-derived peptide SPRWYFYYL (AUPR,
0.623). We also conducted ablation studies with respect to EPACT’s

essentialmodules, including the pretraining process, contrastive loss
and feature encoding strategies (Extended Data Table1). The presented
benchmarking results illustrate that EPACT exhibited a capability of
predicting a8 TCR-pMHC recognition for unseen epitopes and distinct
TCR populations.

EPACT enables interpretable analysis of epitope-specific TCRs
Accurateidentification of TCRs targeting particular tumour-associated
or viral epitopes can help expedite vaccine development and
T cell-based immunotherapies® . Previous unsupervised clustering
methods, such as GLIPH2 (ref. 21) and TCRdist3 (ref. 23), mapped the
input single or paired TCRs to unique clusters based on sequence fea-
tures and assigned specificities based on the sequence resemblance to
TCRswith known targets. However, epitope-specific TCRs recognizing
common pMHC complexes might not share high sequence similarity,
especiallyinthe hypervariable CDR3 loops, partly dueto theinherent
diversity of TCR repertoires and TCR degeneracy®* These properties
present challenges for inferring the epitope-specific TCR clones within
aTCRrepertoire.

The contrastive learning module in EPACT mapped pMHC anchors
and TCRs into an interpretable co-embedding space. We assumed
that epitope-specific TCRs would be organized into clusters around
the centroid representing the epitope targets. To illustrate the effec-
tiveness of EPACT for predicting epitope-specific TCRs, we chose 16
SARS-CoV-2 epitopes withrestricted MHC alleles. We constructed the
SARS-CoV-2 epitope-specific TCR clusters and assigned the candidate
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Fig.2 | EPACT boosts CD8" TCR-pMHC recognition for unseen epitopes plots of AUPRs (c) and PR curves (d) of the candidate methods in cross-validation
and distinct TCR populations. a, The experimental and predicted binding (predicting for unseen epitopes). The bars represent the average AUPRs across
affinity (normalized IC, values) of test pMHC pairs. b, Predicted AUPRs across obtained from five-fold cross-validation (n = 5), and the error bars indicate the
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model in this study with existing methods (BigMHC_EL, P=0.014; NetMHCpan (e) and PR curves (f) of the candidate methods in testing (predicting for VDJdb
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1.5x interquartile range; points, data points; *P < 0.05, ***P < 0.0001. c¢,d, Bar
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TCRs to the nearest pMHC anchors, setting the maximum cosine dis-
tance from the anchor to 0.4 for high specificity in each TCR cluster
(Fig. 3d). The predicted epitope-specific TCRs for different epitope
presented by HLA-A*01:01, HLA-B*15:01 and HLA-B*44:02 were close in
Uniform Manifold Approximationand Projection (UMAP) space®. This
probably implies the impact on TCR-pMHC recognition from the HLA
genotypes®. Next, we inspected the amino acid preferences of CDR3af3
sequences responding to five 9-mer spike protein epitopes (LTDEMI-
AQY, YLQTRPFLL, NYNYLYRLF, QYIKWPWYIand NQKLIKNQF) (Fig.3e
and Supplementary Fig. 2). The regions of the spike-epitope-specific
CDR3ap loops that primarily contacted the epitope were highly diverse
despite the conserved regions at the Nand C terminus®. Nevertheless,
glycine (G) and polaramino acids, such as asparagine (N), serine (S) and
threonine (T), were more likely to occur at the core positions of CDR3a3
sequences. To confirm the representativeness of the epitope-specific
clusters, we compared the distribution of the spike and non-spike
epitopetargets withtheir known binding TCRs (Fig. 3fand Supplemen-
tary Fig.3). The UMAP projections of TCRs with experimental specific-
ity also gathered around the cognate pMHC targets and appeared to
form cluster shapes similar to the predicted ones.

EPACT aligns with T cell responses to SARS-CoV-2 exposure
We further investigated the application potential of EPACT to clini-
cal cohorts through a longitudinal study*. Reference 45 profiled
the SARS-CoV-2-responsive CD8" T cells from samples that under-
went distinct antigen exposure through single-cell RNA sequenc-
ing and single-cell TCR sequencing. Thus, we constructed an
external TCR-pMHC recognition dataset comprising 3,540 unseen
SARS-CoV-2-responsive TCR clonotypes and five times non-binding
TCRs from healthy human samples. We evaluated the model gener-
alizability of STAPLER*, NetTCR v.2.2 (ref. 38), EPACT and MixTCR-
pred” to unseen TCR clones. To validate the necessity of CDR1 and
CDR2 features, we also assessed the performance of EPACT trained
on CDR3af3 data and NetTCR v.2.0 (ref. 27). EPACT substantially
enhanced the model capacity (Fig. 4a,b), achieving amedian AUPR of
0.510 (95% Cl, 0.494-0.525) across all SARS-CoV-2 epitopes by 1,000
bootstrap iterations. Meanwhile, the second-best method, NetTCR
v.2.2,achieved amedian AUPR of 0.455 (Cl, 0.438-0.471). The median
AUPR of EPACT (0.426; 95% Cl, 0.409-0.441) substantially decreased
when solely using CDR3a3 features. We also examined the model
performance for each SARS-CoV-2 epitope (Extended Data Fig. 3a).
EPACT demonstrated a nearly equivalent predictor as MixTCRpred,
anensemble of peptide-specific models (average AUPR, 0.382 versus
0.398). Givenabundant training data, contrastive learning empowered
EPACT with high specificity** so that it outperformed MixTCRpred in
predicting TCRs binding to twoimmunodominant SARS-CoV-2 epitopes
(TTDPSFLGRY AUPR, 0.666 versus 0.605; YLQPRTFLL AUPR, 0.765
versus 0.753). In addition, EPACT delivered remarkable advantages
over other pan-specific models, resulting in higher AUPRs for 12 in 14
epitope targets compared to NetTCR v.2.2 (Fig. 4c¢).

We next applied EPACT to the entire SARS-CoV-2 epitope-specific
CDS8" T cell repertoires (4,471 unique TCR clonotypes) in the cohort

to explore whether EPACT could detect the dynamics of T cell
binding specificity and other phenotypes (Fig. 4d). We predicted
antigen-specific clusters in the TCR repertoire by calculating the
cosines distances between the projections of TCRs and pMHC anchors
(Extended DataFig. 3b,c). We calculated the enrichment ratios of vari-
ous SARS-CoV-2 epitope-specific TCRs across 16 clusters (Fig. 4e). The
antigen-specific clusters derived from EPACT predictions were consist-
ent with experimental specificity of the majority®. For instance, five
groups of spike-epitope-specific TCRs (targeting AO1_LTD, A02_YLQ,
A24_NYN, A24_QYIl and B15_NQK) were highly enriched in the corre-
sponding clusters. The TCR clonotypes near the pMHC anchor rep-
resenting B44_AEV or B44_QEL exhibited ambiguous experimental
specificity duetothe limited data. We also inspected the gene expres-
sion profiles of the antigen-specific TCR clusters (Fig. 4f), including
cytotoxicmarkers (NKG7, GNLY, GZMB, GZMH), memory markers (TCF7,
IL7R, SELL) and exhaustion markers (CTLA4, PDCD1, TOX, TIGIT)®°.
Although the antigen-specific T cell population was composed of
T cells with various functions and phenotypes®, we inferred several
general characteristics of the T cell compositionin the antigen-specific
clusters. Spike-specific T cells corresponding to AO2_YLQ and A24_NYN
might maintain large numbers of T cells with durable cellular memory
(upregulated expression of the memory markers). T cells targeting
A02_LLY might accounted for a lower proportion of differentiated
effector T cells (downregulated expression of cytotoxic markers).

We employed the percentage prediction rank of TCRs to reflect the
relative binding strength and monitored the variationin binding rank
and TCR clonal expansion upon diverse SARS-CoV-2 antigen exposure
and vaccination. We compared the binding ranks of TCR-pMHC pairs
from each sample across five categories, including infection only (inf),
vaccinated only (vax2), infected followed by one/two doses of vaccine
(inf-vax1/inf-vax2) and breakthrough infection after two doses of vac-
cine (vax-inf). Median binding ranks by stratifying donors and epitopes
across categoriesrevealedanincreasein the binding strength with spike
epitopes after vaccination compared to non-spike responses (Fig. 4g,
top), especially in the inf-vax2 group (P = 0.033, Student’s t-test). We
observed asimilar trendin T cell clonal expansion that the clone sizes
of spike-specific TCRs were greater than non-spike clones after vac-
cination (Fig.4g, bottom), especially in the inf-vax2 group (P=0.003,
Student’s t-test). We further divided the SARS-CoV-2-responsive TCR
clonotypes into ‘Strong binder’ (299.5%), ‘Weak binder’ (=95%) and
‘Others’. The strong binders with spike epitopes in the vaccination
groups (inf-vaxl and inf-vax2) accounted for a larger proportion in
the TCR repertoire (Extended Data Fig. 3d-f) compared to those tar-
geting non-spike epitopes. Our analyses aligned well with the experi-
mental findings that spike and non-spike T cell response varied with
SARS-CoV-2infections and vaccination®.

EPACT uncoversresidue interactions between epitope and
CDRs

Despite the complicated recognition mechanism between paired TCR
chains and pMHC to trigger immune responses, the residual-level
interaction undoubtedly plays an essential partin the formation and

Fig.4 | EPACT predicts epitope-specific CD8" T cell responses to SARS-CoV-2
infection and vaccination. a, Test AUPRs on unseen SARS-CoV-2 TCR-pMHC
recognition dataset. Two methods receiving paired CDR3a} inputs and another
four based on additional V,) gene annotations were compared. The bars
represent the median by 1,000 bootstrap iterations, and the error bars indicate
the 95% Cls. b, PR curves of EPACT-CDR3, NetTCR v.2.2, EPACT and MixTCRpred.
¢, Pairwise comparison of test AUPRs for 14 epitope targets between two models
using CDR1, CDR2 and CDR3 sequences (EPACT and NetTCR v.2.2). Five spike
epitopes are annotated. d, Workflow to analyse SARS-CoV-2-responsive TCR
clonotypes collected from ref. 45, including predicting antigen-specific clusters
and TCRbinding ranks. e, Heatmap of log enrichment ratios of TCRs with
experimental specificity across predicted antigen-specific clusters. Darker
colours along the diagonal indicate better alignment between prediction and

experimentresults. f, Bubble plots of normalized expressions and fractions of
expressed cells of T cell mark genes in each antigen-specific TCR cluster defined
by EPACT. The circle size denotes the percentage proportion of cells expressing a
marker genein each cluster, and the colour scale indicates the normalized gene
expression across all clusters. g, Median binding rank (top) and log clonal
expansion (bottom) of spike-specific and non-spike-specific TCRs across four
groups upon diverse SARS-CoV-2 antigen exposure and vaccination, including
‘inf” (Rgpike =18, Mnon—spike = 37), ‘inf-vaxl’ (nspike = 15, Mon—spike = 25), ‘inf-vax2’
(Ngpike =35, Nnon—spike = 48) and ‘vax2-inf” (ngpike = 9, Nnon—spike = 16). Each point
represents atriplet of adonor, an epitope and agroup. The comparison between
the spike-specific and non-spike-specific TCR responses was conducted using a
two-sided Student’s ¢-test (P values are displayed above the violin plots). Panel

d created with BioRender.com.
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Fig. 5| EPACT successfully characterizes TCR-epitope interaction
conformations. a, Box plots displaying the cross-validation PCC (left), RMSE
(middle) and AUC (right) in predicting distance and contact matrix between
CDR3p and epitope by average baseline, TEIM-Res and EPACT. Box centre line,
median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range;
points, data points. The Pvalues are derived from paired ¢-tests (PCC, RMSE,
n=148; AUC, n=146). The median values are highlighted. b, Cross-validation PCC,
AUC, RMSE in predicting distance and contact matrix between CDR1a, CDR3a

or CDR3p and epitope (PCC, RMSE, n=148; AUC, n =146). Data are presented as

mean + standard deviation. Higher PCC and AUC stand for better performance,
whereas RMSE is the opposite. ¢, Visualization of the representative TCR-pMHC
binding interfaces for YEIH"*, PRPF3**, GPER1**", RNASEH2B*" and gspD"*. The
TCR-pMHC complex structures were retrieved from the PDB database (PDB

IDs 7N2Q, 7N2R and 7N2P) or predicted by the TCRmodel2 server (structures
surrounded by grey dashed lines). d, Average contact scores to CDR1a (top) and
CDR3p (bottom) loops of the amino acids along the epitope sequence predicted
by EPACT. The error bars denote the standard deviations of contact scores across
allactivated AS or acute anterior uveitis TCRs.

stability of the TCR-pMHC complex’. Accurate identification of hydro-
genbonds, saltbridges and van der Waalsinteractions between epitope
and CDR loops can promote understanding of potential TCR degen-
eracy and cross-reactivity. We first cross-validated the fine-tuned
EPACT and TEIM-Res** on 148 public TCR-pMHC complex structures
in STCRDab®. We also included a baseline method that output an
average distance matrix. We ensembled the validation predictions
of CDR3B-epitope interactions and calculated the PCC and root
mean squared error (RMSE) for distance matrix prediction and AUC
for contact site prediction (Fig. 5a). EPACT manifested a significant
advance compared to the average baseline and TEIM-Res, achieving
amedian PCC 0f 0.953 (TEIM-Res, 0.942, P=5x 107, paired t-test), a
median RMSE of 2.05 (TEIM-Res, 2.22, P=2 x 107) and a median AUC
0f 0.966 (TEIM-Res, 0.958, P=0.05). EPACT outperformed TEIM-Res
inpredicting CDR33-epitope interactions for almost 70% of the avail-
able TCR-pMHCstructures (Extended Data Fig. 4). Moreover, EPACT
supported the investigation of interactions between epitope and other
CDR loops than CDR3f. We chose to quantify the structural interplay
between CDR1a, CDR3a and the epitope due to the involvement of
CDRIla and CDR3a in van der Waals interactions with the epitope in
76.4% and 86.5% of the structures. The cross-validation metrics for
distance and contact predictions containing CDR1a.and CDR3a amino

acid residues were comparable to CDR3[-epitope predictions (Fig. 5b,
average PCC, CDR1a: 0.928, CDR3ai: 0.925, CDR3[3: 0.942).

Weapplied theinteractionmodeltointerrogate theresidue-level bind-
ing characteristicsbetweenaseries of cross-reactive TCRs and their epitope
targets. Reference 46performed peptide activation assays to determine
the activated human or microbial peptides presented by HLA-B*27:05 for
several TCRs withadisease-associated TRBV9-CDR3 motif. We predicted
the distance and contact matrices for 60 activated TCR-peptide pairs to
interpret the TCR cross-reactivity instances of the autoimmune disease.
We selected the five most common peptides that activated the expanded
TCR clonotypes in ankylosing spondylitis (AS) and acute anterior uveitis
patients, including YEIH®** (LRVMMLAPF), PRPF3*" (TRLALIAPK), GPERT*
(GQMWLLAPR), RNASEH2B* (GQVMVVAPR) and gspD* (GKTELLAPF), to
findshared properties ofinteraction conformation. The structure organiza-
tionofthe peptidesdepicted aconserved TCRrecognition mode emphasiz-
ing crucial contactsites at P4, P6 and P8 of the peptide*® (Fig. 5¢c). Contact
scores predicted by EPACT identified the binding hotspots and structural
motif (aminoacid at P4 stretching out towards the CDR1a loop and the side
chains at P6 and P8 facing the CDR33) and captured the slight structural
deviations (Fig. 5d). Methionine (M) at P4 obtained ahigher contactscore
tothe CDR1aloop thanother aminoacids, which coincided with structural
evidence regarding side chainarrangement.
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Fig. 6 | EPACT helps investigations of structure-driven TCR cross-reactivity.
a, Residue-residue experimental (left) and predicted (middle) distance matrices
and predicted contact scores (right) characterizing CDR1a-epitope (top) and
CDR3p-epitope (bottom) interactions in the MEL8 TCR-Melan A peptide-
HLA-A*02:01complex. The colour scales in the heatmap represent amino

acid pairs from close to distant and contact scores from low to high. The core
interaction regions are surrounded by the dashed lines. b, Bar plots comparing
the experimental distances in PDB structures (PDBID 7Q9B) and predicted
distances by EPACT or TEIM-Res of nine interchain residue pairs from CDR3f and

CASSYSFTEATYEQYF
MEL8 CDR3p sequence

Melan A peptide. ¢, Visualization of the core interaction regions, including CDR1a
(left) and CDR3 (right) loops of MEL8 TCR and Melan A peptide.

d, Sequence motif (top) and heatmap (bottom) to display the positional amino
acid preferences of peptides recognized by MEL8 TCR. e, Density plot to show

the distribution of predicted binding scores to MEL8 TCR among the IEDB HLA-
A*02:01-presented peptides. The x axis is transformed into a log scale. f, Contact
scores with Melan A (top), BST2 (middle) and IMP2 (bottom) peptide along the
CDR3p sequence of MEL8 TCR. The dashed lines indicate the average contact
level of the top 11.1% peptide binders along the CDR3[3 sequence.

EPACT facilitates the illumination of TCR cross-reactivity

To further explore the underlying mechanism of TCR cross-reactivity,
we applied EPACT to predict the interaction conformation between a
cancer-reactive MEL8 TCR and three tumour-associated epitopesin the
context of HLA-A*02:01(ref. 47). The TCR clone was derived from a stage
IV malignant melanoma patient with successful tumour-infiltrating
lymphocyte therapy®®. Reference 47attributed the multipronged
T cell recognition of different cancer-specific or pan-cancer antigens
tomolecular mimicry according to the shared binding motifand struc-
tural hotspots. Because the crystal structure of MEL8 TCR-pMHC was
notincludedinthetraining data, we directly utilized EPACT to quantify
theresidue-residue distance matrices and predictinterchain contact
residue pairs between CDR1x, CDR3«, CDR3f3 loops of MEL8 TCR and
a10-mer Melan A peptide EAAGIGILTYV (Fig. 6a and Supplementary
Fig.4). EPACT demonstrated an outstanding prediction performance
for the core regions of the CDR1a-epitope (PCC, 0.961; RMSE, 0.782;
AUC, 1.00) and CDR3-epitope (PCC, 0.728; RMSE, 1.71; AUC, 0.852)
interfaces. We chose the residue pairs that probably formed van der
Waals forces or hydrogen bonds (closest distance <4.0 A) from CDRIa,
CDR3 and the epitope and compared the experimental distances and
predicted distances by EPACT (Fig. 6b,c and Supplementary Fig. 4).

EPACT notably reduced the prediction errors for nearly all the residue
pairs compared to TEIM-Res. Specifically, EPACT reconstructed the
CDR3p binding mode (withminor prediction errors) around the central
threonine (T), connecting four consecutive peptide amino acids (G4,
I5,G6 and 17)* by one hydrogen bond and van der Waals interactions.
The consensus on core interacting sites also suggested the peptide
motif contributing to the molecular mimicry.

We also simulated the amino acid preference among the
tumour-associated peptidesto activate the cross-reactive MELS TCR.
Specifically, we curated a collection of 10-mer peptides presented by
HLA-A*02:01from theimmune epitope database (IEDB)*’ and predicted
their binding scores with the MEL8 TCR. We then randomly chose
2,000 peptide sequences and utilized a simulated annealing strategy
to generate the peptide motif (Fig. 6d). After filtering the favourable
point mutations for 500 iterations, the amino acid preference derived
from the top 2% predictions successfully captured the G-I-G-1 motif,
similar to positional scanning in the experimental peptide library”®”.,
Insilico simulation also implicitly suggests a possible position shift of
the G-I-G-Imotif,and the Melan A,,, peptide ELAGIGILTV mightinitiate
MELS8T cell activation even more effectively. The Melan A peptide, bone
marrow stromal antigen 2 (BST2) peptide LLLGIGILVL and insulin-like
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growth factor 2mRNA-binding protein 2 (IMP2) peptide NLSALGIFST
thatresponded to MEL8 TCRin activation assays obtained top binding
ranks (top 0.2%, 0.3% and 11.1%) among the IEDB HLA-A*02:01 pre-
sented peptides (Fig. 6e). These epitope peptides also demonstrated
elevated contact levels with the side regions of CDR1ac and CDR3f3
loops compared to the average level of other top binders (Fig. 6f).
In addition, we employed the validation prediction for interactions
between another cross-reactive TCR (MELS5) and the BST2 peptide
(Extended Data Fig. 5a-e) to affirm EPACT’s capacity to decipher the
driving factors of molecular mimicry. Structural modelling results of
MELS8-BST2 peptide and MEL8-IMP2 peptide interactions provided
additional evidence for the EPACT-predicted interaction conforma-
tions (Supplementary Fig. 5).

Discussion
EPACT presents aninterpretable framework to address the multiscale
binding and interaction within the TCR-pMHC complex and adapt
to emerging paired TCR sequencing data. It achieved SOTA perfor-
mancein predicting TCRbinding specificity and residue-level contacts,
leveraging the power of pretrained language models and contrastive
learning. In-depth analyses were performed to illustrate the applica-
tion potential of EPACT, including identification of antigen-specific
TCRclusters, estimation of SARS-CoV-2 spike/non-spike-specific T cell
response and investigation of TCR cross-reactivity to recognize mul-
tiple tumour-associated antigens. In accordance with the sustained
release of high-quality TCR binding specificity dataand TCR-pMHC
complexstructures, EPACT is expected to be developed and explored
asamore practical computational tool to accelerate the assessment of
TCR-based immunotherapies and vaccines in diverse clinical studies.
Despite the advantages of EPACT over other methods in model
generalizability and interpretability, it still can be improved to be
appliedtothereal-world clinical scenario, especially for predicting the
responsive TCRs for neoepitopes. The pretraining processis critical to
capture the underlying representations of epitope and TCR sequences,
and assuch, arefined pretrained architecture’” may enhance model per-
formance. Because somatic recombination and genetic rearrangement
canresultindiverse and individualistic TCR populations’, alarger and
more representative paired TCRaf dataset comprising multiple cell
types may expedite the representative learning of the TCR clonotypes™.
For predicting TCR recognition for epitope targets with few binding
TCRs, the commonly used negative sampling strategy mightintroduce
biases that cannot beignored*'. Data scarcity of the less frequent HLA
alleles might also influence the model predictions®. Although EPACT
has already provided a version that accepts only CDR30af3 sequences
to handle the missing V, ) gene annotations, it cannot deal with other
partialinputs, suchas single TCR chain and multiple TCR alpha chains®
or lacking MHC restriction. To obtain a more comprehensive under-
standing of the nature of T cells, several computational methods” 7’
integrated single-cell gene expression profiles and TCR sequences to
enable the joint T cell analysis. Incorporating the single-cell profiles
during the pretraining or transfer learning stage holds great potential
for predicting TCR-pMHC interactions, identifying epitope-specific
T cell clusters and providing deeper insights into T cell functions and
phenotypes. Itis also noteworthy to extend the interaction conforma-
tion predicted by EPACT to reconstruct the three-dimensional (3D)
structure of the CDR-epitopeinterface’”, which hopefully will provide
amore intuitive view to model and interpret molecular mimicry and
TCR cross-reactivity.

Methods

Datasets

Pretraining peptides and TCRaf3 sequences. To prepare the pre-
training dataset of human peptides, we filtered the linear epitope
sequences within the length of 8-25 amino acids of the positive T cell
and MHC ligand assays in IEDB®. The pretraining corpus of paired

TCRa B sequences was obtained from the single-cell immune profil-
ing data of the healthy and tumour donors in 10X Genomics Datasets
(https://www.10xgenomics.com/resources/datasets, Supplementary
Table1) and five previous studies adopted in STAPLER®*%*, All unique
TCR clonotypes with CDR3 sequences and V and J gene annotations
were extracted for TCR alpha and beta chain. Next, 1,081,172 peptides
and 180,888 TCR pairs were split into training, validation and test
datasets accordingto the ratio of 0.8:0.1:0.1, respectively.

PMHC binding/presentation dataset. Binding affinity databetween
peptides and MHC was derived from the training data of NetMHCpan
v.4.1(ref.52)(https://services.healthtech.dtu.dk/suppl/immunology/
NAR_NetMHCpan_NetMHCIIpan/), including 170,470 scaled and nor-
malized IC,, values spanning 111 HLA class I alleles:

f(ICsp) = max (0,1 - logs, s (ICs0))

We randomly selected 10% of the affinity data for testing and trained
the model on the remaining dataset because the original paper did
not provide any independent test data. The training and validation
datafor predicting epitope presentation consisted of 288,032 eluted
ligands (ELs) and 16,739,285 negative pairs, respectively, across 149
MHC alleles collected from BigMHC* (https://data.mendeley.com/
datasets/dvmz6pkzvb/4). The evaluation datacomprising 45,409 ELs
and 900,592 negative pairs spanning 36 alleles were the same EL dataset
used in the NetMHCpan v.4.1study for benchmarking.

TCRaB-pMHC recognition dataset. To construct a representative
dataset for TCR-pMHC recognition, we combined the human TCR-
PMHC binding pairs with confirmed CD8 expression from multiple
sources, including IEDB®’, VDJdb*>’, McPAS-TCR¥, TBAdb®*®, 10X*’
and ref. 64. We associate the TCR sequences with the T cell assays of
specific epitopes and MHC alleles in IEDB (https://www.iedb.org/),
whichwere downloaded on 31 August 2023 using the following query
parameters: Homo sapiens, Reference type: journal article, linear
epitope, MHC class I and T cell assays only. We also downloaded the
human TCR-pMHC-I datasets with paired TCRa3 sequences fromthe
VDJdb database (https://vdjdb.cdr3.net/) and the McPAS-TCR database
(https://friedmanlab.weizmann.ac.il/McPAS-TCR/) and TBAdb from the
Panimmunerepertoire database (https://db.cngb.org/pird/), respec-
tively. The 10X dataset was obtained from over 150,000 CD8" T cells
of four healthy donors stained with 44 distinct pMHC multimers. We
integrated the binarized matrices and TCR clonotype annotations.
We assigned the TCR binding specificities according to the criteria
of unique molecular identifier counts described in the application
note ‘A new way of exploring immunity: linking highly multiplexed
antigen recognition to immune repertoire and phenotype’. We also
extracted the TCRaf-pMHC binding pairs from CD8" T cells of 28
SARS-CoV-2-infected patients and 23 unexposed individuals stained
with SARS-CoV-2-derived DNA-barcoded pMHC multimersinthe sup-
plementary data file S3 of ref. 64 and then removed the TCR clono-
types annotated with multiple alpha chains. We concatenated the
TCRafB-pMHC binding pairs containing CDR3af} sequences, V and
Jgeneannotations, peptide sequences and MHC alleles from six original
datasets into a combined dataset. The preprocessing of TCR-pMHC
recognition data is presented in Supplementary Note 1. Statistics of
the datasets used for training and validation are shown in the Sup-
plementary Table 2.

SARS-CoV-2 epitope-specific TCR clonotypes. The SARS-CoV-
2-responsive TCR dataset was derived from a cohort of 55 individu-
als, including 16 SARS-CoV-2 negative participants, 30 participants
recovered from mild disease, and 9 participants who experienced
symptomatic breakthrough infection that shaped spike-specific and
non-spike-specific immune responses of memory CD8" T cells upon
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infection and vaccination®. SARS-CoV-2 epitope-specific TCR clono-
types were identified and sequenced through DNA-barcoded MHC
dextramers and single-cell TCR sequencing. This study assigned TCR
recognition specificities for six spike proteinepitopes and 12 non-spike
epitopes presented on HLA alleles A*01:01, A*02:01, A*24:02, B*15:01
and B*44:02 according to the dextramer barcode unique molecular
identifier counts. We excluded two SARS-CoV-2 epitopes (AO1_NTN and
B44_VEN) from our analysis due to the minimal numbers of correspond-
ing T cells and finally obtained 4,471 TCR clonotypes. We removed the
overlapped TCRap-pMHC pairsin our training dataset or the training
data of MixTCRpred®. For external benchmarking, 3,540 TCR clono-
types with their experimentally assigned specificities were selected.

TCRapB-pMHC complex structures. The crystal structures of the
TCRaB-pMHC complex were derived from the STCRDab®” database
(https://opig.stats.ox.ac.uk/webapps/stcrdab-stcrpred). After remov-
ingthe noisy ones (PDBIDs 6UZI, 7BYD) and duplicated TCRa3-pMHC
pairs, we constructed astructural dataset of 148 crystal structures. We
extracted the coordinates of the heavy atoms of the amino acid residues
and calculated the residue-level closest distances between CDR loops
(CDRI1a, CDR3a and CDR3p) and the epitope. Contact residue pairs
were defined asthose whose spatial distances (the distance betweenthe
nearest heavy atom pair from two amino acid residues) are within 5 A,
based on which the contact matrices were calculated and generated.

Epitope-anchored contrastive transfer learning

Model backbone. Under the transfer learning framework, paired
TCRa sequences of the binding or non-binding TCRs were sampled
and input into the TCR language model to obtain the pretrained TCR
embeddings, respectively. At the same time, the representations for
the pMHC complex were extracted from the pMHC binding predic-
tion model that took HLA molecules with their presented peptides as
inputs. Model development of the pretrained model can be found in
Supplementary Note 2. A multihead self-attention layer and two 1 x 1
residual convolutional blocks were subsequently applied separately
for further feature extraction from each sequence modality. Next, the
fine-tuned embeddings of TCR and pMHC were fed into the contras-
tive co-embedding module or fused to provide model predictions for
different downstream tasks.

Contrastive co-embedding module. The classificationembeddings
representing class tokens of TCR and pMHC were projected toashared
latent space by two MLP projectors. We designated one pMHC complex
asananchor in contrastive learning and then pulled the binding TCRs
closetothe anchorinthelatent space while pushing the ‘non-binding’
ones away. Given one pMHC complex p, aset of binding (positive) TCRs
To0s and a bunch of decoy (negative) TCRs T, with their projected
representationsinatraining batch, cosine similarity between the pMHC
anchor and sampled TCRs were calculated. The cosine similarities
between TCR-pMHC binding pairs were expected to be larger than the
similarities between the shuffled negative pairs. The epitope-anchored
supervised contrastive loss** was calculated as follows:
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where sim (-)denotes cosine similarity, u’ and v’ represent the projected
embeddings of pMHC and TCR, respectively, risthe temperature factor
of the loss function, N, is the collection of pMHC complexes in one
batch, and five decoy TCRs are sampled each time.

Binding specificity prediction. We evaluated the model capacity to
predict the binding specificities for unseen epitopes through five-fold
cross-validation and assessed model generalizability on distinct TCR
background populations from VDJdb. Epitopes in the training data

were divided into groups by hierarchical clustering according to a
minimum similarity score of 0.8 to achieve the zero-shot setting in
cross-validation. The pairwise similarity score between epitope
sequences e;and e ;was defined as

SW(e;e;)

\/SW(e,e)SW (e . e ;)

where SW (-) denotes the local alignment score between two protein
sequences using the Smith-Waterman algorithm®® and BLOSUM62
substitution matrix. To predict TCR-pMHC binding specificities, clas-
sificationembeddings of TCR and pMHC were concatenated and input
into an MLP classifier and sigmoid activation function. In addition to
minimizing the contrastive loss, the binary cross-entropy between
predicted logits and labels was also included in the loss function to
improve the adaptivity to unseen data:
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where h(u, v) denotes the predicted logits given the embeddings of
pMHC and TCR, and « is the weighting factor of the contrastive loss.
Parameters of the pretrained epitope language model, TCR language
model and MHC convolutional encoder were fixed. The cross-attention
layer was fine-tuned toinclude TCR recognition information from MHC
molecules. The AdamW optimizer with a learning rate of 2 x10™* was
used to train the binding specificity model for 50 epochs, and an
early-stopping strategy was employed to monitor the validation AUC.

Interaction conformation prediction. The residue-level interaction
between CDR (CDR1a, CDR3a, CDR3p) sequences and epitope dem-
onstrated an essential signature for the binding conformation of the
TCR-pMHC complex. Thus, the residue-level TCR and pMHC feature
embeddings were integrated by outer product and subsequently fed
into a 2D convolutional layer with a kernel size of 3 x 3. The output of
the convolutional layer consisted of two channels: the first channel was
followed by aReLU activation function to predict the pairwise distance
matrices between CDRs and epitope; the second used asigmoid func-
tion to predict the contact probabilities between amino acid residue
pairs. Five-fold cross-validation was performed in which highly similar
epitopes were split into different folds (using the same strategy of
epitope clustering in binding specificity prediction). A modified MSE
loss divided by the distance between residues was utilized to reduce
the influence on predictions from distant residue pairs, and binary
cross-entropy loss was used for contact prediction. The weighting
factorsforinteraction thatinvolve CDR1a, CDR3x and CDR3[3 were set
t0 0.3,0.6 and 1.0, respectively, after taking into consideration of the
sequencelength and critical role of CDR3f. The two parts of loss were
summed and optimized using the AdamW optimizer withalearning rate
of 2x107* for 100 epochs. The pretrained parameters were unfrozen
inthis stage, but the fine-tuning learning rate was ten times smaller.

All deep-learning models included in EPACT were implemented
using PyTorch v.2.0.1 and trained on one NVIDIA GeForce RTX 3090
GPU. Detailed model size and hyperparameters are provided in Sup-
plementary Table 3.

Clustering analysis of epitope-specific TCR clones

Representations of pMHC and TCR sequences were projected into
the shared latent space, so we defined the embedding vector of a par-
ticular pMHC anchor as the centroid of the corresponding pMHC/
epitope-specific TCR clusters. Therefore, candidate TCRs could be
assigned to the closest pMHC anchor according to their cosine similar-
ity. Wealsointroduced asimilarity threshold of 0.4 to maintain the high
specificity of the epitope-specific TCR clusters. The pMHC anchors

Nature Machine Intelligence


http://www.nature.com/natmachintell
https://opig.stats.ox.ac.uk/webapps/stcrdab-stcrpred
https://doi.org/10.2210/pdb6UZI/pdb
https://doi.org/10.2210/pdb7BYD/pdb

Article

https://doi.org/10.1038/s42256-024-00913-8

representing 16 SARS-CoV-2 epitopes and the epitope-specific TCR
cloneswere visualized in two-dimensional space after UMAP®* with the
parametersn_neighbors =10, min_dist = 0.1, and the metricis the cosine
distance. We collected the CDR3af3 sequences in each SARS-CoV-2
epitope-specific TCR cluster, performed multiple sequence alignment
by MUSCLE®, and drew the CDR3 motifs, respectively. The positionsin
multiple sequence alignment where gaps occurred in over half of the
aligned sequences were removed.

Analysis of SARS-CoV-2 epitope-specific T cell responses

As mentioned in the previous section, we predicted the SARS-CoV-2
epitope specificity of the TCR clonotypes according to the cosine
distances to the pMHC anchors, thus constructing potential
antigen-specific T cell clusters. After comparing the ratio of experi-
mentally assigned epitope-specific TCRsin the predicted cluster and
others, we calculated the enrichment ratios (ERs) in each cluster for
each type of SARS-CoV-2 epitope-specific CD8'T cells:
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where C,, C represent the set of TCR clonotypes in experimental and
predicted epitope-specific cluster and j, respectively, and N refers
to the number of all clonotypes orina particular cluster. We calculated
the percentage prediction rank of TCRs to validate the relationship
between T cell specificity and SARS-CoV-2 antigen exposure. Twenty
thousand TCR sequences were sampled fromthe T cell repertoires of
healthy human samples to generate the background distribution of
binding scores, and we located the percentile for the candidate TCR.
Wealso collected the expression profiles of various subsets of memory
CD8'T cellsand metadata, including donors, vaccination category and
spike specificity from the original study®, to analyse the variation of
binding specificity and clonal expansion upon diverse conditions.

Calculation of contact preference for cross-reactive TCRs

We predicted the residue-residue contact matrices between the
cross-reactive AS-associated TCRs and their cognate peptides (viral
peptides and self-peptides). The contact score of each amino acid
residue along the peptide sequence was defined as the average of the
top three contact probabilities with CDR1a or CDR3[ residues. We also
performed an insilico screening of cognate peptides for a particular
TCR (MEL8/MELS5 TCR) by simulated annealing’ to investigate the
consensus among binding peptides. First, 2,000 peptides were sam-
pled from all HLA-A*02:01-presented epitopes deposited in the IEDB
database as the initial peptide population. We predicted their binding
scores with the target TCR and then randomly mutated a single amino
acid of each peptide. After predicting the TCR binding specificity of
the mutated sequences, the mutations with increased binding scores
were accepted. In contrast, part of the other mutations was retained
according to the acceptance probability:

, s—s
P(s,s',t) = exp( T© )

where s and s’ denote the binding scores of the original and mutated
peptide sequences, and 7(¢)is the temperature of the tthiteration that
declines proportionally. After 500 iterations, the top 2% of the final
peptide population was extracted to render the sequence motif and
heatmap representing the amino acid preferences of peptides for the
cross-reactive TCRs.

Validation of interaction conformation between TCRs and
TAAs

We chose the TCR-pMHC complexes containing MEL8/MELS5 TCR and
cognate tumour-associated antigens from the PDB database (PDB IDs
7Q9A and 7Q9B) to validate the residue-level predictions of pairwise

distances and contact probabilities. Contact residues from CDR loops
and the epitopeinvolved in van der Waals interactions (<4 A) and hydro-
genbonds (<3.4 A) were selected for performance evaluation and visu-
alized using PyMOL. We characterized the interaction conformations
between MEL8/MELS TCR and all of the Melan A, BST2 and IMP2 peptides
and compared themwiththe structuralmodelling results. The web server
of TCRmodel2 (ref. 91) was employedto predict the 3D structures of TCR-
pMHC complexes (modelling statistics in the Supplementary Table 4).
Wealso computed the contactscores along CDR1acand CDR3[3 sequences
withthe HLA-AO2-presented peptides that possibly bind to MEL8/MEL5
TCR (derived from binding specificity predictions by EPACT).

Statistical analyses

Allstatistical testsin the study were two-sided. The error barsinthe bar
plots represent 95% Cls unless otherwise stated. Performance bench-
marking metrics, including AUC, AUPR and RMSE, were calculated
using the Python package scikit-learn v.1.3.0. UMAP was performed
using the Python package umap-learnv.0.5.5.Local sequence alignment
(Smith-Waterman algorithm) and hierarchical clustering of epitope
sequences were performed using the Python packages biopython
v.1.8.1 and scipy v.1.11.1, respectively. Sequence motifs were visual-
ized by the Python package logomaker v.0.8 using the colour scheme
‘weblogo_protein®?. PyMOL v.2.4.0 was used to visualize the 3D struc-
ture of TCR-pMHC complexes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data used in this study are available via Zenodo at (https://doi.
org/10.5281/zenodo.10996144)%, The curated datasets of TCR-pMHC
recognition are derived from IEDB® (https://www.iedb.org/), VDJdb*
(https://vdjdb.cdr3.net/), McPAS-TCR® (https://friedmanlab.weiz-
mann.ac.il/McPAS-TCR/), TBAdb®® (https://db.cngb.org/pird/), 10X
Genomics® (https://www.10xgenomics.com/datasets) and Francis
etal.** (https://doi.org/10.1126/sciimmunol.abk3070). Detailed infor-
mationabout the pretrained 10X Genomics Datasets is available in Sup-
plementary Table 1. The crystal structures of TCR-pMHC complexes
with PDB IDs were downloaded from the STCRDab®’ database (https://
opig.stats.ox.ac.uk/webapps/stcrdab-stcrpred/Browser) except for
7Q9B, which was directly downloaded from the RCSB PDB database
(https://www.rcsb.org/). Other structures listed in Supplementary
Table 4 were derived from TCRmodel2 (ref. 91) (https://tcrmodel.ibbr.
umd.edu/) predictions. TCR sequences, experimental epitope specific-
ity, gene expression and other metadata of the SARS-CoV-2-responsive
Tcellswere obtained from the original study* (https://doi.org/10.1038/
$41590-022-01184-4). Cross-reactive TCRs and activated peptidesin the
context of HLA-B*27:05 were obtained from the original study*® (https://
doi.org/10.1038/s41586-022-05501-7). Binding hotspots between
MEL8 or MEL5 TCR and corresponding pMHC complexes were derived
from the original study* (https://doi.org/10.1016/j.cell.2023.06.020).
Source data are provided with this paper.

Code availability

The source code and model weights of EPACT are available via GitHub at
https://github.com/zhangyumenglsjtu/EPACT and Zenodo at https://
zenodo.org/records/10996144 (ref. 93).
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Extended Data Fig. 2 | Benchmarking results on paired TCRaf binding (shaded regions) around the curves represent the standard errors of mean TPRs
specificity data. a, Bar plots of AUCs and AUPRs, and b, ROC curves and and precisions. ¢, Bar plots of AUCs and AUPRs, and d, ROC curves and precision-
precision-recall curves of the candidate TCRaf models on cross-validation recall curves of the candidate TCRaf3 models on the independent test (predicting
(thatis, prediction of unseen epitopes). The bars represent the mean across five for VDJdb TCRs). The bars represent the median by 1000 bootstrap iterations and
folds (n=5) and the error bars indicate the standard deviations. The error bands the error bars indicate the 95% confidence intervals.
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Extended DataFig. 3 | Interpretable prediction and analysis of SARS-CoV-2
responsive TCR clonotypes. a, Performance comparison in terms of AUPRs
derived from MixTCRpred, STAPLER, NetTCR-2.0, NetTCR-2.2, and EPACT for 14
SARS-CoV-2 epitopes. The darker color and larger size of the point indicate a
higher AUPR. b, UMAP projection of the predicted SARS-CoV-2 epitope-specific
TCRclustersin the unseen SARS-CoV-2-responsive TCR dataset. ¢, UMAP
projections of five spike epitope targets and experimental binding TCRs (cross,
PMHC anchor; points, binding TCRs or decoys TCRs). Proportions of predicted

strong binders (rank>=99.5%) and weak binders (rank>95%) d, targeting each
SARS-CoV-2 epitope and e. in spike-specific or non-spike-specific TCRs across
different categories of SARS-CoV-2 infection and vaccination. f. Bar plots showing
the spike-specific and non-spike-specific log clonal expansion of the strong and
weak TCRbinders (‘Others’, ngpie=615, Npon—spike=2036, ‘Weak Binder’, ngp=327,
Mpon—spike=921, ‘Strong Binder’, npixe=218, Nyon_spike=354). Dataare presented as
mean *standard error of mean (s.e.m.).
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Extended Data Fig. 4 | Pairwise comparison of predicted CDR3p-epitope
interactions by EPACT and TEIM-Res. Scatter plots displaying the validation
PCC (left), RMSE (middle), and AUC (right) predicted by EPACT and TEIM-Res

for CDR3p-epitope interactions in each TCR-pMHC crystal structure. The points
indicate the values of EPACT’s metrics are higher or lower than those predicted

by TEIM-Res.
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Extended Data Table 1| Benchmarking results and ablation study of EPACT

Five-fold CV (unseen epitopes) Test (VDJdb+ TCR-pMHC)

Method AUC AUPR :I}] CG* A?J‘I]’ﬁ* AUC AUPR :I}] CG* A?J\I]’g*
ERGO-AE 0.526 0.179  0.578 0274 0.662 0348 0.625 0.405
ERGO-LSTM 0.532  0.187  0.585 0294 0.673 0357  0.665 0.476
STAPLER 0.486 0.169  0.548 0.290 0.662 0.387  0.647 0.467
NetTCR 2.2 0.500 0.170  0.571 0.275 0.706 0.425 0.669 0.461
w/o pre-trained weights 0.563 0.200 0.641 0.328  0.668 0.387  0.648 0.455
w/o contrastive learning 0.567 0.210 0.643 0.342  0.689 0.429 0.648 0.473
w/o pre-trained TCR model** 0.556 0.196  0.636 0330 0.662 0374 0.667 0.475

w/o pre-trained peptide model** 0.581 0.204 0.670 0.346 0.679 0.416 0.692 0.491

w/o MHC one-hot encoding 0.594 0217  0.692 0.366 0.683 0.437 0.674 0.487
MHC BLOSUMS50 encoding only  0.599 0.222  0.680  0.358  0.689 0.430  0.697 0.507

EPACT 0.595 0.224  0.689 0355 0.696 0.443  0.692 0.502

* Averaged AUC/AUPR by stratifying epitopes;

**Use the Atchley factors encoding + convolutional layers instead.
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For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data used in this study are publicly accessible on Zenodo (https://zenodo.org/records/10996144). The curated datasets of TCR-pMHC recognition are derived
from IEDB (https://www.iedb.org/), VDJdb (https://vdjdb.cdr3.net/), McPAS-TCR (http://friedmanlab.weizmann.ac.il/McPAS-TCR/), TBAdb (https://db.cngb.org/
pird/), 10X Genomics (https://www.10xgenomics.com/datasets), and Francis et al. (https://doi.org/10.1126/sciimmunol.abk3070). Detailed information about the
pre-trained 10X Genomics Datasets is available in Supplementary Table 1. The crystal structures of TCR-pMHC complexes with PDB IDs were downloaded from the
STCRDab database (https://opig.stats.ox.ac.uk/webapps/stcrdab-sterpred/Browser) except 7Q9B was directly downloaded from the RCSB PDB database (https://
www.rcsh.org/). Other structures listed in Supplementary Table 4 were derived fromTCRmodel2 (https://tcrmodel.ibbr.umd.edu/) predictions. TCR sequences,
experimental epitope specificity, gene expression, and other metadata of the SARS-CoV-2 responsive T cells were obtained from the original study (https://
doi.org/10.1038/s41590-022-01184-4). Cross-reactive TCRs and activated peptides in the context of HLA-B*27:05 were obtained from the original study (https://
doi.org/10.1038/s41586-022-05501-7). Binding hotspots between MEL8 or MEL5 TCR and corresponding pMHC complexes were derived from the original study
(https://doi.org/10.1016/j.cell.2023.06.020). Source data are provided with this paper.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender N/A

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine the sample sizes. The data used for model training and validation were downloaded from
the corresponding databases and articles, including IEDB, 10X Genomics Datasets, STAPLER, NetMHCpan, BigMHC, VDJdb, McPAS-TCR, TBAdb,
Francis et al., and STCRDab. In the pre-training stage, 1,081,172 peptides, 170,470 peptide-MHC pairs with binding affinities, and 180,888 TCR
pairs were included which were sufficient to capture the biological representations. After preprocessing and filtering according the criteria
mentioned in the main text, there remained 11,112 TCRaB-pMHC binding pairs and 148 TCR-pMHC complex structures for fine-tuning.
Negative TCRaB-pMHC pairs were sampled by a positive:negative ratio of 1:5. The sample numbers were also sufficient to fine-tune a model
for specific tasks. A statistical summary of the detailed sample sizes of the datasets is provided in the Supplementary Table 3.

Data exclusions | We excluded the epitopes having less than five binding TCRs in the combined dataset for model training. We excluded two SARS-CoV-2
epitopes (AO1_NTN and B44_VEN) from our analysis due to the minimal numbers of corresponding T cells when analyzing the SARS-CoV-2
epitope-specific TCR clonotypes. Additionally, we also removed the noisy structures (PDB IDs: 6UZI, 7BYD) and duplicated TCRaB-pMHC pairs
in the structural dataset.

Replication We performed five-fold cross-validation tests for model assessment and validation. We made available the source code of model training on
GitHub and double checked and executed the code to confirm the reproducibility.

Randomization  The data used for training and validation were randomly split and shuffled. We guaranteed the fairness of five-fold cross-validation that data
containing similar epitope sequences were split into the same fold.

Blinding The authors were blinded to the group allocation during data collection and analyses.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms

Clinical data
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