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Proteins secreted by Gram-negative bacteria are tightly linked to the virulence and adaptability of these 
microbes to environmental changes. Accurate identification of such secreted proteins can facilitate 
the investigations of infections and diseases caused by these bacterial pathogens. However, current 
bioinformatic methods for predicting bacterial secreted substrate proteins have limited computational 
efficiency and application scope on a genome-wide scale. Here, we propose a novel deep-learning-based 
framework—DeepSecE—for the simultaneous inference of multiple distinct groups of secreted proteins 
produced by Gram-negative bacteria. DeepSecE remarkably improves their classification from nonsecreted 
proteins using a pretrained protein language model and transformer, achieving a macro-average accuracy 
of 0.883 on 5-fold cross-validation. Performance benchmarking suggests that DeepSecE achieves 
competitive performance with the state-of-the-art binary predictors specialized for individual types 
of secreted substrates. The attention mechanism corroborates salient patterns and motifs at the N or 
C termini of the protein sequences. Using this pipeline, we further investigate the genome-wide prediction 
of novel secreted proteins and their taxonomic distribution across ~1,000 Gram-negative bacterial 
genomes. The present analysis demonstrates that DeepSecE has major potential for the discovery of 
disease-associated secreted proteins in a diverse range of Gram-negative bacteria. An online web server 
of DeepSecE is also publicly available to predict and explore various secreted substrate proteins via the 
input of bacterial genome sequences.

Introduction

Gram-negative bacteria are common primary pathogens that 
use a variety of sophisticated nanomachines, including type I, 
II, III, IV, and VI secretion systems, to deliver virulence factors 
into extracellular tissue spaces and/or target cells [1,2]. Different 
types of secretion systems have distinct substrate secretion 
mechanisms and recruit secreted proteins with particular 
sequence patterns [3]. These secreted proteins can affect cellular 
functions and/or disrupt signaling pathways once translocated 
into host cells. For instance, the Dot/Icm type IV secretion 
system in Legionella pneumonia can transfer hundreds of effector 
proteins into the macrophages of a host to ensure the survival 
and reproduction of the pathogen [4], resulting in severe pneumo-
nia, called Legionnaires’ disease. On the other hand, some 
type III secreted proteins in Citrobacter rodentium have been 

reported to form intracellular networks and induce immune 
and/or host adaptive responses [5]. Therefore, the prediction, 
identification, and classification of secreted proteins from 
bacterial genomic data are relevant to exploring the virulence 
of bacterial pathogens.

With advances in research of bacterial secretion systems, 
increasing numbers of secreted substrates have been identified 
that can function as virulence factors or improve bacterial 
fitness [4–8]. There are many publicly available resources about 
bacterial secretion systems. Of these, SecReT4 [9] and SecReT6 
[10] provide manually curated collections of type IV and type 
VI secretion systems reported in the literature, respectively. 
MacSyDB/TXSSdb [11] has a collection of various secretion 
systems inferred from bacterial genomes through the colocali-
zation of protein components of secretion systems. BastionHub 
[12] integrates 5 major types of curated substrates that are 
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secreted by Gram-negative bacteria, providing an analytical 
platform. These dedicated collections of secreted proteins enable 
in silico discovery of novel secreted proteins encoded by the 
bacterial genes.

Despite substantial efforts to discover new secreted proteins, 
the number of experimentally verified secreted substrates is 
limited because of the cost, nature, and extent of laboratory 
work required. In silico methods, particularly machine-learning-
based approaches, have been developed and used to identify 
and distinguish secreted substrates from nonsecreted proteins 
[3,13]. For instance, some tools identify different types of 
secreted proteins, including type I secreted proteins (T1SEs) 
[14,15], T3SEs [16–22], T4SEs [23–31], and T6SEs [32,33]. 
Position-specific scoring matrix (PSSM)-based methods, such 
as Bastion3 [18], CNN-T4SE [28], and Bastion6 [32], usually 
achieve a sound predictive performance. PSSM profiles effec-
tively capture evolutionary information from protein sequences. 
Still, the computing time required to search for similar sequences 
is excessive, making this approach unsuitable for the large-
scale predictions of bacterial secreted proteins. For these rea-
sons, we created a rapid and accurate software tool, T4SEfinder 
[31], to identify T4SE, harnessing a pretrained protein lan-
guage model that learns the biological representations of pro-
tein sequences. These representations are reported to reflect 
structure, evolutionary, and/or biophysical contexts [34]. In 
addition, integrating multifaceted sequence features within 
homology- and machine-learning-based models such as T3SEpp 
[19] has also been shown to provide a better trade-off between 
prediction accuracy and efficiency.

Most current methods, such as CNN-T4SE [28] and Bastion6 
[32], can predict individual types of secreted proteins but can-
not classify all types due to the marked variation in secretory 
signals and sequence patterns representing distinct secre-
tion systems [3]. A feature-based statistical framework, called 
PREFFECTOR [35], was the first method to predict secreted 
proteins of multiple secretion systems (types I to VI) in Gram-
negative bacteria; although this approach can differentiate 
secreted substrates from nonsecreted proteins, it cannot reliably 
assign the proteins to particular secretion systems. EffectiveDB 
[36] established and integrated methods for predicting secreted 
proteins of types III, IV, and VI within a unified web resource, 
and BastionHub [12] can also predict proteins of types I and 
II. These 2 methodologies rely on a combination of binary 
classification models and, hence, cannot precisely identify 
secreted proteins and assign them according to secretion sys-
tem type. A robust multiclass model is required to overcome 
this challenge. In addition, secreted proteins are characterized 
by the presence of a signal peptide, which is a short sequence 
(of usually 16 to 30 amino acids) at the N terminus (“classical”) 
or, occasionally, at the C terminus or internally (“nonclassical”) 
[3]. The signal peptides often play an essential role in the trans-
portation of secreted proteins, but most existing methods did not 
capture the signal regions, resulting in a lack of interpretability.

Here, we leverage the advantages of a pretrained protein 
language model [37] to train the deep neural network, which 
we call deep-learning framework for secreted (effector) pro-
teins (DeepSecE), to identify all 5 major types of secreted sub-
strates (T1SE to T4SE and T6SE) represented in a curated 
dataset of ~3,000 protein sequences. This deep learning model 
not only attains the performance of the state-of-the-art classi-
fiers, including Bastion3 [18], T4SEfinder [31], and Bastion6 
[32], but also allows the genome-wide inference of secreted 

proteins to decipher the secretion systems of Gram-negative 
bacteria further. In addition, we provide an integrative database 
of putative secreted proteins in a wide range of Gram-negative 
bacteria and a web server for secreted protein identification on 
a genome-wide scale. Given the predictive power and inter-
pretability of the transformer model, DeepSecE will facilitate 
the discovery of novel secreted proteins and enable studies of 
their functional involvement in the pathogeneses of bacterial 
diseases.

Results

Deep learning model yields robust representations 
for secreted proteins
We trained and cross-validated our models using a curated 
dataset containing 1,341 secreted substrates (Data File S1) and 
1,577 nonsecreted proteins (see “Materials and Methods” 
section). We designed a novel model architecture for DeepSecE 
that incorporates a large pretrained protein language model 
[38] to capture the universal representations of protein sequences; 
it includes an additional transformer layer to learn the distinct 
embeddings of secreted proteins. Input protein sequences are 
consecutively “fed” into these 2 modules, which deliver the 
secretion embedding vectors (256d) that are then used to 
categorize the sequences as type I, II, III, IV, or VI secreted 
substrates or as nonsecreted proteins (Fig. 1A). We extracted 
the embeddings of secreted and nonsecreted proteins from the 
training data and used the Uniform Manifold Approximation 
and Projection (UMAP) algorithm [39] to reduce the embedd
ing dimension. The UMAP projections of protein sequences 
were visualized in different colors representing the 5 different 
types of secreted proteins. Each type formed a separate cluster 
in the embedding space (Fig. 1B), which means that DeepSecE 
provides a robust representation of all 5 types of secreted 
protein. The universal embeddings from the pretrained protein 
language model, which mainly represent sequence similarity, 
are also displayed (Fig. S1) to corroborate the learning progress 
of the secretion embedding.

The multiclass classifier can define 5 types of 
secreted proteins
We performed a 5-fold cross-validation to assess the model 
capacity of DeepSecE and an independent test (i.e., using a 
hold-out test set) to evaluate its generalizability. More than half 
of the proteins in the dataset were nonsecreted (i.e., 54.04% in 
the training set). Different types of secreted substrates varied 
in number (Fig. S2). Type IV secreted proteins constituted 
17.37% (n = 507) of the dataset, but only 2.33% (n = 68) of the 
training sequences were T2SEs. The unbalanced data compo-
sition might affect prediction results, particularly for the minor 
types of secreted proteins.

We combined the predictions from the validation set during 
cross-validation and plotted the receiver operating characteristic 
(ROC) curves for each class, including nonsecreted proteins 
and 5 major types of secreted proteins (Fig. 1C). The predicted 
area under the ROC curve (AUC) scores were within 0.946 to 
0.991, indicating accurate and robust predictions for various 
types of secreted proteins. The multiclass confusion matrix 
intuitively displays the predicted sensitivity for all substrate 
types and the nonsecreted protein and the misclassification rate 
that mistakes one class for another (Fig. 1D). About 96% of the 
nonsecreted proteins were correctly classified, suggesting that 
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DeepSecE can effectively reduce the occurrence of false-positive 
results. The sensitivity of T1SE prediction approached 90%, 
mainly due to the longer sequence length and the remarkable 
amount of repeats-in-toxin (RTX) domains [40]. Approximately 
80% of type III, IV, and VI secreted proteins were correctly 
classified. Their corresponding secretion systems represent the 
membranes of bacterial cells and can transport proteins across 
an additional host cell membrane [1]. Thus, the similar secre-
tion mechanism and pattern might lead to a relatively higher 
misclassification rate between T3SE, T4SE, and T6SE [41]. The 
lowest proportion of T2SEs in the dataset might lead to a sen-
sitivity of 72.1%.

The ROC curves and confusion matrices in Fig. 1E and F 
indicate excellent generalizability in independent testing. All 
of the AUC scores predicted are >0.97 (0.973 to 1.000), and the 
sensitivity for each class is ~90% (nonsecreted, 88.7%; T1SE, 
95.0%; T2SE, 90.0%; T3SE, 93.3%; T4SE, 96.7%; T6SE, 85.0%). 
The results suggest that DeepSecE provides reliable predictions 
for all 5 types of secreted proteins.

The secretion-specific transformer block enhances 
the model capacity
We built 2 baseline models representing different prediction 
schemes. The first one was based on the PSSM profiles, while 
the other replaced the feature extraction module with a pre-
trained protein language model. PSSM-CNN utilized a trilayer 
convolutional network to make predictions based on the PSSM 
profiles. Two protein language models, TAPE [42] and ESM-1b 

[38], were selected for our experiments (see “Materials and 
Methods” section). We used 2 training strategies to complete 
the downstream task of secreted protein prediction. We attempted 
to freeze the weight of the pretrained model and added a linear 
classifier (i.e., linear probing) or fine-tuned the last layer of the 
language model. We also trained a machine learning classifier using 
XGBoost based on one-dimensional (1D) ESM-1b embeddings. 
Overall, DeepSecE, with a secretion-specific transformer block, 
outperformed the other 5 models (PSSM-CNN, TAPE-Linear, 
ESM-1b-XGBoost, ESM-1b-Linear, and ESM-1b-Finetune) 
assessed on both cross-validation and independent tests.

We evaluated all 6 models by comparing their predictive 
accuracy, F1 score, and area under the precision-recall curve 
(AUPRC). The model performances are shown in Table and 
Fig. S3. The PSSM-CNN model achieved an accuracy of 0.799 
[95% confidence interval (CI), 0.772 to 0.826] and an F1 score 
of 0.712 (CI, 0.649 to 0.774) on the cross-validation test. 
Applying the pretrained protein language model boosted the 
performance notably. The TAPE model with linear probing 
(TAPE-Linear) achieved an accuracy of 0.816 (CI, 0.781 to 
0.851) and an F1 score of 0.764 (CI, 0.686 to 0.842), and the 
larger ESM-1b model (ESM-1b-Linear) achieved a markedly 
higher accuracy of 0.876 (CI, 0.850 to 0.901) and an F1 score 
of 0.841 (CI, 0.795 to 0.888). However, fine-tuning the pre-
trained model (ESM-1b-Finetune) might not improve predic-
tion metrics significantly. The performance of ESM-1b-XGBoost 
(an accuracy of 0.869 and an F1 score of 0.809) also confirmed 
the remarkable representation power of pretrained ESM-1b. 

Fig. 1. DeepSecE captures specific features from secreted proteins and makes robust predictions. (A) Overview of DeepSecE, a transformer-based model for secreted protein 
prediction. DeepSecE uses a pretrained protein language model and a secretion-specific transformer block to learn the secretion embeddings. (B) The UMAP projection 
of the secretion embeddings learned from training data. Each type of secreted substrate protein forms a separate cluster in the embedding space. (C to F) ROC curves for 
secreted and nonsecreted proteins and confusion matrices in (C and D) cross-validation and (E and F) independent test. Values in the confusion matrix’s diagonal represent 
each class’ predictive sensitivity.
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DeepSecE obtained the highest accuracy of 0.883 (CI, 0.860 to 
0.905) and an F1 score of 0.848 (CI, 0.807 to 0.890), demon-
strating the superior performance of the model. We also 
attempted to replace the ESM-1b in the DeepSecE model with 
a fully connected embedding layer, and the significant drop in 
validation accuracy (decreasing from 0.883 to 0.686) affirmed 
the necessity of using the pretrained language model to provide 
prior embeddings for the transformer block. When DeepSecE 
was tested using previously “unseen” data, it greatly enhanced 
the model generalizability than the other candidate deep learning 
models due to the secretion-specific representations. Although 
ESM-1b-XGBoost exhibited excellent generalizability, DeepSecE 
increased the test accuracy from 0.887 (CI, 0.860 to 0.913) to 
0.898 (CI, 0.880 to 0.915) and the F1 score from 0.816 (CI, 0.772 
to 0.860) to 0.849 (CI, 0.830 to 0.868), respectively.

The hold-out test set is composed of secreted proteins with 
a wide range of sequence identities against the protein sequences 
in the training data, including 110 secreted proteins that can 
be divided into 6 groups according to the sequence identity 
(<20%, 20% to 30%, 30% to 40%, 40% to 50%, 50% to 60%, and 
≥60%). We summarized the prediction results of the identity 
groups using different model architectures (Fig. S4). We found 
an explicit trend that the predicted accuracy and F1 score gen-
erally rose with increasing sequence identity against those in 
the training data, suggesting that the deep learning model 
can partially manipulate the patterns of sequence homology. 
DeepSecE achieved accuracy scores of 0.857, 0.862, 0.933, 
0.920, 1.000, and 0.957 for individual groups and reached the 
best performance (of all candidate models) for 4 of 6 (66.7%) 
groups. We also compared the AUCs and AUPRCs for non-
secreted proteins and the 5 types of secreted substrates in each 
cross-validation split (Fig. 2A and B). The universal representa-
tion of protein sequences learned by ESM-1b contributes to a 
breakthrough in model performance for all substrate types and 
nonsecreted proteins, in contrast to 2 baseline models. In general, 
the performance of DeepSecE for each type of secreted proteins 
slightly surpassed that of 3 other models (ESM-1b-XGBoost, 
ESM-1b-Linear, and ESM-1b-Finetune) using the ESM-1b pre-
trained model.

Benchmarking DeepSecE against state-of-the-art 
binary classification methods
No published multiclass prediction tool has considered all 5 
major types (I to IV and VI) of secreted substrates of Gram-
negative bacteria. Here, we selected 7 state-of-the-art binary 
predictors (T1SEstacker [15] for T1SE; BEAN 2.0 [17], Bastion3 

[18], T3SEpp [19], and EP3 [21] for T3SE; Bastion4 [27], CNN-
T4SE [28], iT4SE-EP [30], and T4SEfinder [31] for T4SE; and 
Bastion6 [32] for T6SE) for performance comparison. We used 
DeepSecE to predict the protein sequences in independent 
datasets and recorded the classification metrics. The predicted 
probabilities for a particular type of secreted protein and non-
secreted protein were compared to determine the prediction 
by the multiclass classification model.

The prediction performance of DeepSecE was comparable 
to that of the state-of-the-art methods for T3SE and T4SE, and 
it performed better for T1SE and T6SE (Table S1). Specifically, 
DeepSecE substantially improved the prediction for T1SE com-
pared to T1SEstacker (Fig. S5A) that was based on non-RTX-
motif features at the C termini (accuracy of 99.4% versus 92.9% 
and F1 score of 0.974 versus 0.727). DeepSecE also achieved 
an accuracy of 91.2%, an F1 score of 0.916, and a Matthews’ 
correlation coefficient (MCC) of 0.827 on a test dataset 
comprising 108 T3SEs and 108 nonsecreted proteins. Its per-
formance was very similar to that of T3SEpp that integrated 
multicategory biological features and EP3, an ensemble pre-
dictor that used PSSM features (Fig. 2C). When tested on the 
hold-out dataset of type IV secreted proteins (30 T4SEs and 
150 nonsecreted proteins), DeepSecE outperformed T4SEfinder 
(accuracy of 97.8% versus 96.7%, F1 score of 0.935 versus 0.903, 
and an MCC value of 0.923 versus 0.884) and was second only 
to CNN-T4SE (Fig. 2D). In contrast to the PSSM-based 
predictor Bastion6 (Fig. 2E), DeepSecE displayed a balanced 
sensitivity (95.0% versus 100.0%) and specificity (98.5% versus 
88.5%) and attained a higher accuracy (96.8% versus 94.3%), F1 
score (0.967 versus 0.946), and MCC value (0.936 versus 0.892).

Although the benchmarking performance of DeepSecE did 
not surpass the state-of-the-art predictors for T3SE (Bastion3) 
and T4SE (CNN-T4SE), it is noteworthy that the binary 
classification approaches might face a higher risk of mistakenly 
predicting another type of secreted proteins as the target type. 
When measuring the misclassification rates on the independent 
test data, DeepSecE remarkably reduced the false positives 
derived from other types of secreted proteins (Fig. 2F to H and 
Fig. S5B). Furthermore, the binary predictors were inferior to 
our multiclass model when distinguishing a particular type 
of secreted protein from the others. For instance, T3SEpp mis-
classified 12 T4SEs and 8 T6SEs (Fig. 2F), while CNN-T4SE 
categorized 4 T3SEs into T4SE (Fig. 2G). Such false positives 
would negatively influence the binary predictors’ capability to 
identify novel secreted proteins from bacterial genomic 
data. We then estimated and compared the computing time of 

Table. Performance of different model architectures on cross-validation (CV) and independent (Ind.) tests.

Pretrained model Strategy
ACC F1 AUPRC

CV Ind. CV Ind. CV Ind.

None PSSM-CNN 0.799 0.822 0.712 0.724 0.752 0.774

TAPEBert Linear probing 0.816 0.838 0.764 0.770 0.802 0.822

ESM-1b XGBoost 0.869 0.887 0.809 0.816 0.865 0.872

ESM-1b Linear probing 0.876 0.870 0.841 0.810 0.880 0.871

ESM-1b Fine-tuning 0.878 0.850 0.846 0.808 0.887 0.883

ESM-1b Secretion-specific transformer 0.883 0.898 0.848 0.849 0.892 0.885
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various methods to predict the test sequences (Fig. 2I). It took 
approximately 1 min to complete the prediction by DeepSecE, 
demonstrating its advantages in computational efficiency over 
other predictors, especially the PSSM-based ones (CNN-T4SE 
and Bastion6).

Rapid prediction of secretion systems and novel 
secreted proteins
Genome-wide prediction of the repertoires of secreted proteins 
by bioinformatics approaches enables the investigation of 
the widespread distribution, evolution, and pathogenicity of 

secreted proteins among bacterial populations [13]. Here, we 
initiated a pipeline to predict secretion systems and associated 
secreted proteins from bacterial genomic data. We integrated 
the identification of protein secretion systems in Gram-negative 
bacteria via Macsyfinder [11] with our DeepSecE model for 
subsequent prediction of secreted substrates (see “Materials 
and Methods” section).

DeepSecE only requires protein sequences as input and 
eliminates the feature engineering process (e.g., generation of 
PSSM profiles). Using DeepSecE, it took ~5 min to complete 
the prediction of secreted proteins from 2,972 protein-coding 

Fig. 2. Benchmark evaluation reveals the comparable performance of DeepSecE against state-of-the-art methods. (A and B) Evaluation metrics of AUC and AUPRC for each 
class (including all 5 types of secreted and nonsecreted proteins on cross-validation under different model architectures and/or training strategies). (C to E) Performance 
comparison with the state-of-the-art binary predictors for type III (C), IV (D), and VI (E) secreted protein, respectively. (F to H) Comparison of predicted true positives and 
false positives between DeepSecE and T3SEpp (F), CNN-T4SE (G), and Bastion6 (H), respectively. The numbers in the heatmap represent how many proteins of a certain type 
were predicted as the target secreted protein (T3SE/T4SE/T6SE). (I) Computing time of various methods to predict 260 protein sequences in the independent test set. The 
y axis is in the log scale.
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sequences of Legionella pneumophila subsp. pneumophila str. 
Philadelphia 1 [National Center for Biotechnology Information 
(NCBI) accession number: NC_002942.5] on an NVIDIA 
GeForce RTX 2080 Super graphics processing unit (GPU). We 
also successfully identified the gene clusters representing type 
II and IV secretion systems [4,43].

To examine the power of DeepSecE as a genome-wide pre-
dictor, we investigated the T4SEs predicted for L. pneumophila 
subsp. pneumophila str. Philadelphia 1. DeepSecE identified 
most of the known substrate proteins in the experimental 
dataset (280 in 307), with a recall of 91.2%, which exceeded 
the recall of T4SEfinder (87.0%). It produced fewer T4SE can-
didates (394 versus 459) for a more efficient validation (Fig. 3A 
and Table S2). Using thresholds of the predicted scores, we 
could further filter the high-confidence candidates, despite the 
slight decrease in recall (Fig. 3B). These findings suggest that 
DeepSecE might support the discovery of novel secreted pro-
teins with low sequence identities (20% to 40%) to known ones 
(Fig. 3C), such as LegA1, LegA6, and lpg1975, which are newly 
annotated T4SEs in VFDB [44] (excluded from our experimen-
tal dataset). The Lvh T4SS was reported to contribute to the 
virulence phenotype in cooperation with the Dot/Icm T4SS 
[45]; accordingly, we established the distribution of secreted 
proteins within 30-kb upstream or downstream of the Lvh T4SS 
(Fig. 4A) using the integrative genomics viewer (IGV) [46] 
genome browser and observed some Dot/Icm T4SS-secreted 
proteins (e.g., VpdB and Lem8).

We also inspected the genome-wide prediction results for 
secreted proteins in 4 other genomes of Gram-negative bacteria, 
including Pseudomonas syringae pv. tomato str. DC3000 (T3SE) 
(NC_004578.1), Salmonella enterica subsp. enterica serovar 
Typhimurium str. LT2 (T3SE) (NC_003197.2), Pseudomonas 
aeruginosa PAO1 (T6SE) (NC_002516.2), and Vibrio cholerae O1 
biovar El Tor str. N16961 chromosome II (T6SE) (NC_002506.1), 
and then compared the results with experimental findings (Fig. 
S6). DeepSecE reliably identified secreted proteins of various 
bacteria (experimentally confirmed) (recall: 80.0% to 93.9%; 
Table S2). Effectidor [22] was also used to predict T3SEs that 
prioritized the sequence homology to known T3SEs. It might 
improve the prediction precision at the cost of model capacity 
to discover novel secreted proteins. Sequence identities of the 
novel candidates of T3SE, T4SE, and T6SE with known secreted 
proteins were low (20% to 40%) (Fig. S7 and Data File S2), 
indicating that DeepSecE has the potential to identify and clas-
sify new groups of secreted proteins with yet unknown func-
tional roles in host–bacteria interactions and pathogenesis.

Sequence attention correctly identifies  
sequence motifs
Signal peptides present at the N or C termini of the sequences 
are considered essential characteristics of secreted proteins. 
DeepSecE paid attention to individual amino acids along the 
entire sequence and, thus, was able to correctly identify relevant 
sequence compositions. For instance, DeepSecE successfully 
identified 2 key motifs within the PNPLA domain (residues 
31 to 36, GXGXXG; 60 to 64, GXSXG) and an active site of 
Nucleophile (62S) in the PNPLA domain-containing protein 
of the Dot/Icm T4SS secreted protein VpdB [47] of L. pneumo-
phila subsp. pneumophila str. Philadelphia 1 (UniProt accession 
Q5ZW60) [48] (Fig. 4B). Here, sequence attention (see “Materials 
and Methods” section) in DeepSecE identified an N terminus that 
was consistent with a type IV secretion signal and a C terminus 

predicted to be related to secretion (Fig. 4C). On the other hand, 
sequence attention within DeepSecE also inferred an MIX 
(marker for type 6 effectors) motif [49,50] (residues 23 to 164) 
and 2 key residues 74Q and 150E linked to the secretion of the 
toxin protein VasX, which is typically released by a type VI 
secretion system (T6SS) in V. cholerae serotype O1 (Fig. S8).

Presence and distribution of secreted proteins 
across Gram-negative bacteria species
We investigated the secretion systems and corresponding 
secreted proteins in reference and representative genomes of 
bacteria (Fig. S9 and see “Materials and Methods” section). The 
type I secretion system is distributed across a wide range of 
Gram-negative bacteria (1,303 putative apparatus in 664 assem-
blies predicted by Macsyfinder), while other types of secretion 
systems were usually found in a small number of the bacteria 
(T3SSs in 149 of 759 species, e.g., P. syringae, S. enterica, Shigella 
flexneri, and Yersinia pestis); this difference likely relates to the 
complex structural organization and secretion mechanisms.

The abundance of secreted proteins in a bacterial genome 
might relate to virulence and/or pathogenicity. T3SEs predicted are 
primarily found in Chlamydia, Pseudomonas, and Xanthomonas, 
whereas a large number of T4SEs are present in Legionella 
(Fig. 5A). More than 12% of protein-coding sequences in the 
genomes of Legionella are predicted T4SEs. T1SEs, T2SEs, and 
T6SEs are relatively evenly distributed among Gram-negative 
bacteria, particularly of the family Enterobacteriaceae, includ-
ing the genera Escherichia and Salmonella (Fig. 5B). However, 
secreted proteins predicted among members of the genus Vibrio 
exhibit a distinct composition, with a limited abundance of 
T3SEs and T6SEs. The type III and VI secreted proteins of the 
family Enterobacteriaceae appear to be involved in specific 
virulence/pathogenicity [51,52].

We also observed that the secreted proteins could be further 
divided into subgroups according to the embedding space 
learned by DeepSecE, which appear to represent collections of 
protein families. The secreted proteins that belong to the Nle 
(non-LEE-encoded) [53] family in the genera Escherichia and 
Citrobacter cluster into a T3SEs subgroup (Fig. 5C). Most of 
the Rhs (rearrangement hotspot) [54] secretion proteins in 
Escherichia coli, Shigella, Erwinia and, Pseudomonas were also 
gathered within the embedding space (Fig. 5D). On the basis 
of these findings, we conclude that the interpretability of the 
learned protein embedding can contribute to subtype classifi-
cation of secreted proteins of Gram-negative bacteria.

The integrative platform of bacterial secretion 
systems and secreted proteins
We also implemented a comprehensive web resource, named 
DeepSecEdb, available at https://tool2-mml.sjtu.edu.cn/
DeepSecEdb/ that not only includes a wide range of bacterial 
secretion systems and secreted proteins but also provides robust 
predictions and functional categorization for putative secreted 
proteins (see “Materials Methods” section). The database has 
covered 1,047 complete assemblies of Gram-negative bacterial 
genomes, 3,479 protein secretion system apparatus, and 111,866 
unique putative secreted proteins annotated within a universal 
web platform involving a diverse range of Gram-negative bac-
teria (Fig. S10). DeepSecEdb incorporates 4 functional modules 
(Fig. 6A), including (a) “Browse”, which provides information 
about the distribution of secretion systems and secreted 
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substrates and functional categorization of the putative secreted 
proteins; (b) “Prediction”, which supports sequence-level 
and genome-level prediction for secreted proteins based on 
DeepSecE model; (c) “Search”, which looks for bacterial 
genomes and secreted proteins in the database; and (d) 
“Statistics”, which provides a statistical overview of the data 
entries in terms of pathogen species, secretion system apparatus, 
and secreted proteins.

The browse page contains the distribution of secretion systems 
and secreted substrates in specific bacterial genomes (Fig. 6B). 
It also exhibits the genomic locations of the apparatus and 
secreted proteins through the genome browser. A series of func-
tional analyses (Table S3) are integrated into the database 
to enable a deeper understanding of the potential secreted 
proteins. For example, users can search homologous protein 

sequences in the experimentally verified dataset or those having 
predicted 3D structures in AlphaFoldDB [55]. In addition, the 
information about pathogen–host interactions and protein–
protein interactions can also help reveal their potential roles in 
bacteria pathogenesis. The prediction server of DeepSecE (Fig. 
6C) is freely available to the broader international community. 
Users can submit prediction jobs to identify secreted proteins 
by following the instructions in Fig. S11.

Discussion
Numerous substrate proteins secreted by Gram-negative bacteria 
are recognized to play critical roles in virulence/pathogenicity 
[4–8,43,51,52,56] but still need better understanding at the 
molecular level. Insights into these proteins and their biology 

Fig. 3. DeepSecE uncovers novel candidates of secreted proteins. (A) Upset plot to compare the prediction results of T4SEs in by DeepSecE with/without the cutoff threshold 
(predicted score ≥0.6) and T4SEfinder and experimental-verified T4SEs encoded in L. pneumophila subsp. pneumophila str. Philadelphia 1 (NC_002942.5). The bar in green 
highlights the unique T4SE candidates predicted by DeepSecE (score ≥ 0.6). (B) Numbers of predicted T4SE candidates and recalls of detecting experimental secreted proteins 
under different cutoffs of the predicted score. Bars in orange and blue denote the proportions of identified experimental secreted proteins and putative ones, respectively. 
The dashed line indicates the number of experimental proteins. (C) Predicted scores and BLASTp identities against known secreted proteins of the novel candidates of T4SE. 
Three newly annotated T4SEs in VFDB (LegA1, LegA6, and lpg1975) are labeled.
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could assist in the discovery of new interventions against these 
bacteria by disrupting or interrupting host–pathogen interac-
tions. Most algorithms used to date to predict and classify 
secreted proteins in bacteria cannot be applied effectively to 
large genomic datasets because they usually rely heavily on 
protein similarity searching. Leveraging the power of the pre-
trained deep learning model to encode the sequences [57], 
DeepSecE requires only protein sequences as inputs and over-
comes the computational inefficiency of commonly used 
algorithms or workflows. Beyond its advantages for feature 
extraction, DeepSecE shows comparable performance to state-
of-the-art PSSM-based methods to predict T3SE and T4SE and 
outperforms the predictors for T1SE and T6SE (Fig. 2C to E 
and Fig. S5). It demonstrates great competitivity in the large-
scale identification of secreted proteins due to the decrease in 
false positives and improvement in computational efficiency 
(Fig. 2F to I).

Presently, 5 major types (I to IV and VI) of secretion systems 
are known to translocate secreted proteins in Gram-negative 
bacteria. However, previous prediction tools have yet to pay 
adequate attention to information within sequence motifs and/
or secretion signals to identify and classify substrate types. We 
showed that a deep learning model could distinguish secreted 
substrate proteins (all 5 types) from nonsecreted proteins. The 
secretion-specific transformer layer in the DeepSecE model 
successfully learned the latent features of secreted proteins 

belonging to different types, improving the model performance, 
as demonstrated in cross-validation and independent tests (Fig. 
1C to F). To investigate whether DeepSecE could undertake 
multiclass classification, we plotted ROC curves for all classes 
of secreted and nonsecreted proteins and the confusion matrices. 
DeepSecE achieved relatively balanced predictions for individual 
types of secreted substrates, despite using imbalanced training 
data (Fig. 2A and B). An assessment of the model’s generaliz-
ability using “hold-out” sequences with divergent sequence 
identities against the training data revealed that DeepSecE 
achieved excellent performance across most sequence identity 
groups (Fig. S4).

Although a deep learning model might lack biological inter-
pretability, the attention mechanism used in the transformer 
provides an alternative for the inference of informative regions 
along the sequences of secreted proteins. This approach pays 
attention and identifies the secretion signal or amino acid pref-
erence(s) at the N and/or C termini of the protein sequence 
(Fig. 4B and C and Fig. S8), consistent with experimental and 
structural evidence [47,50].

Genome-wide prediction of secreted proteins usually requires 
a combination of multiple homology-based and machine learn-
ing methods based on different features [13]. Contrastively, 
DeepSecE provides a rapid and end-to-end computational tool 
for the prediction of secretion systems and associated substrate 
proteins in an intuitive manner. It usually takes less than 10 min 

Fig. 4. Sequence attention provides informative insights into protein secretion. (A) Genomic distribution of predicted T4SEs within 30-kb upstream or downstream of the Lvh 
T4SS in L. pneumophila subsp. pneumophila str. Philadelphia 1 (NC_002942.5). (B and C) Visualization of the (B) N-terminal and (C) C-terminal sequences of a Dot/Icm T4SS 
secreted protein VpdB, indicating the secretion pattern or amino acid preference in T4SE.
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to predict secreted proteins encoded in the bacterial genome 
with an acceleration of GPU. It shows considerable potential 
for identifying and classifying a wide range of novel secreted 
proteins in disparate organisms and should overcome the 
current limitation of ambiguous classification of some proteins. 
Here, we studied 5 types of secretion systems and scanned for 
secreted proteins within the genomes of 5 representative Gram-
negative bacterial pathogens and compared the prediction 
results with the experimentally verified proteins (Fig. 3 and Fig. 
S6). The findings showed that the predictions using DeepSecE 
not only often agreed with experimental findings but, impor-
tantly, also proposed novel candidates of secreted substrates 
with limited sequence identities to known secreted proteins. 
Moreover, investigating the presence, distribution, and abun-
dance of secreted protein candidates in representative bacteria 
(Fig. 5A and B) revealed that some substrate types are enriched 
in particular genera or species, suggesting a link with virulence and 
pathogenicity. The well-organized web resource of DeepSecEdb 
(Fig. 6A) with comprehensive functional analysis and genome-
scale prediction server can be explored as a valuable tool to 
guide hypothesis-driven experimental design and validation 
of secreted proteins.

In conclusion, this study demonstrates the capacity and 
interpretability of a deep learning framework for the prediction 
of bacterial secreted proteins. Our findings show that DeepSecE 

is well suited for genome-wide prediction, identification, and 
classification of secreted substrate proteins, allowing hypothe-
ses to be formulated for experimental validation in the labora-
tory. Therefore, DeepSecE might provide a useful bioinformatics 
tool to support the increasing need to discover and understand 
disease-associated proteins in a diverse range of Gram-negative 
bacterial pathogens. There are various routes available that can 
potentially improve our model in the future. The problem of 
imbalanced data was not completely solved, and data augmen-
tation methods might improve the prediction. From another 
perspective, potential improvement could be achieved by inte-
grating more advanced or larger pretrained protein language 
models such as ProGen, ESM-2, and xTrimoPGLM [58–60]. 
These foundational models can capture and decipher the 
underlying biological features from protein sequences, but we 
also need to balance the model performance, interpretability, 
and computational efficiency when transferring them to a spe-
cific task such as secreted protein prediction. We also plan to 
extend the prediction of secreted proteins to T5SS, T7SS, and 
other Gram-positive bacteria species. With the experimental 
discovery of secreted substrates accelerated by computational 
methods like DeepSecE and recent advances in large protein 
language models, researchers have the opportunity to obtain more 
reliable predictions on functional secreted proteins and, thus, more 
profound insights into the pathogeneses of bacterial diseases.

Fig. 5. DeepSecE reveals the taxonomic distribution of potential secreted proteins in different genera of Gram-negative bacteria. (A) The abundance of the type I to IV and 
VI secreted substrate proteins among 38 common genera of Gram-negative bacteria (over 5 reference and/or representative genomes in the PATRIC database). A larger dot 
denotes a higher proportion of secreted proteins among the protein sequences encoded in the genome. (B) Distribution of the abundance scores of secreted proteins among 
Gram-negative bacteria, including Pseudomonas, Vibrio, Escherichia, Acinetobacter, and Salmonella. (C and D) Each type of secreted substrates can be divided into subgroups 
in the embedding space which include specific protein families [e.g., (C) Nle and (D) Rhs].
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Materials and Methods

Datasets collection
A curated dataset of type I to IV and VI secreted substrate pro-
teins was derived from manual collections of the corresponding 
databases. In particular, 540 and 331 experimentally verified 
T4SEs and T6SEs from SecReT4 (https://bioinfo-mml.sjtu.edu.
cn/SecReT4/) [9] and SecReT6 (https://bioinfo-mml.sjtu.edu.
cn/SecReT6/) [10] were involved in the training data, respec-
tively. The secreted substrates of T1SE to T4SE and T6SE in 
BastionHub (https://bastionhub.erc.monash.edu/) [12] consti-
tuted another part of the dataset. Nonsecreted proteins from 
2 previous studies [23,25] were selected as the “negative” sam-
ples across several works [18,21,26–32] about secreted protein 
prediction. The negative samples mainly consisted of annotated 
nonsecreted proteins in UniProt and homologous sequences 
from typical pathogenic strains that were also presented in 
E. coli genomes according to BLASTp E values and sequence 
identities. A hold-out test set was collected for a fair assessment 
with existing prediction methods for secreted proteins. The 
hold-out data of T3SE, T4SE, T6SE, and nonsecreted proteins 
were derived from the test dataset of Bastion3, CNN-T4SE, and 
Bastion6. In addition, the hold-out data of T1SE and T2SE were 
randomly sampled from the original data in BastionHub. Next, 
we used CD-HIT v4.8.1 (https://github.com/weizhongli/cdhit/) 
[61] to identify representative clusters of secreted proteins 
(sequence identities ≥ 60%) and remove the homologous 
sequences within the training dataset and between the training 
and test datasets.

Finally, we obtained a training dataset of 1,341 secreted pro-
teins (128 T1SEs, 68 T2SEs, 406 T3SEs, 507 T4SEs, and 232 
T6SEs) and 1,577 nonsecreted proteins in Gram-negative bac-
teria. The hold-out dataset for benchmark testing consists of 
110 secreted proteins (20 T1SEs, 10 T2SEs, 30 T3SEs, 30 T4SEs, 
and 20 T6SEs) and 150 nonsecreted proteins. The benchmark 
data used to compare the model performance with binary clas-
sification methods for type III, IV, and VI secreted proteins are 
the test datasets of Bastion3 [18], CNNT4SE [28], and Bastion6 
[32], respectively. We used the T1SEs and nonsecreted proteins 
in our test data as the independent test sequences of T1SEstacker 
were unavailable.

Protein language model
Protein language models have been reported to capture the 
universal representation of protein sequences successfully and 
therefore have been applied to a wide range of prediction 
tasks about protein structure and properties [58–60,62–64]. A 
transformer-based protein language model ESM-1b (https://
github.com/facebookresearch/esm) [38], with 650M parame-
ters, has learned the biological embeddings of diverse proteins 
on the UniRef50 database (~250 million protein sequences), a 
cluster of UniParc at the 50% sequence identity level, in an 
unsupervised manner. It was pretrained using the masked 
language model objective in which the model was trained to 
predict the masked tokens:

(1)MLM = −
∑

x̂∈m(x)
logp

(
x̂ |x∖m(x)

)

Fig. 6.  Organization of the integrative platform of bacterial secreted proteins and the online prediction server. (A) Brief description of the web service, including modules of “Browse”, 
“Prediction”, “Search”, and “Statistics”. (B) The browse page comprises the distribution of secretion systems and substrate proteins in specific bacterial genomes and detailed 
functional categorization of the secreted proteins. (C) The prediction server supports sequence- and genome-level identification of secreted proteins in Gram-negative bacteria.
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where m(x) and x∖m(x) denote the masked amino acid residues 
from the entire protein and the rest sequence, respectively.

The model capacity showed great improvement in learning 
valuable sequence features compared with recurrent neural 
network models and another transformer-based language model 
TAPE (https://github.com/songlab-cal/tape) [42] (38M param-
eters), which was trained on the Pfam database (~31 million 
protein domains).

Model architecture
We adopted the protein language model ESM-1b as the pre-
trained module in secreted protein prediction. Input protein 
sequences were truncated to no more than 1,020 amino acids 
and transformed into tokens. The pretrained model then out-
putted a 1280d embedding for each token through 33 stacked 
transformer blocks. Each block consists of a multihead self-
attention layer and a fully connected feed-forward network that 
are succeeded by layer normalization. Furthermore, each of 
these 2 sublayers has a residual connection around it.

To learn the specific representation of secreted proteins, an 
extra transformer [65] block was added following the pretrained 
model. The number of attention heads in this transformer layer 
is 4, and the activation function inside the feed-forward network 
is GELU. A 1D convolutional layer helped reduce the embedd
ing dimension of tokens from 1,280 to 256 for better training 
efficiency. The secretion-specific transformer outputted 256d 
sequence embedding after mean pooling along the amino acid 
tokens. A fully connected layer and a softmax activation func-
tion were finally used to classify the protein sequences into 5 
types of secreted or nonsecreted proteins:

where x represents the input protein sequence, L represents the 
sequence’s length, (·)i indicates the embedding vector of the 
amino acid residue at position i, PLM denotes the pretrained 
protein language model, and Transformer denotes the secretion-
specific transformer layer.

Model training
Five-fold stratified cross-validation was used to train the 
DeepSecE model for secreted protein prediction. The propor-
tions of the 5 types of secreted substrates and nonsecreted pro-
teins were approximately the same in each fold of training data. 
The batch size was set to 32, and the maximum number of 
epochs was set to 30 due to the existence of the large pretrained 
model. The Xavier initialization [66] was used to stabilize the 
variance of parameters and avoid vanishing or exploding 
gradients. The Adam optimizer [67] with a cosine annealing 
schedule was used to modify the learning rates in different 
epochs to improve the optimization progress of the cross-
entropy loss function. The dropout rate of attention, the output 
of the multihead attention layer, and the feed-forward layer in 
the transformer block were set to 0.05, 0.4, and 0.4, respectively. 
An early stopping strategy monitoring the F1 score on valida-
tion data with a patience of 5 epochs was used to prevent over-
fitting. The initial learning rate and weight decay of the best 
model were 5 × 10−5 and 4 × 10−5, respectively. Our model was 
implemented using PyTorch 1.10.0 [68] in Python 3.9.7 with 
CUDA 11.3 and trained on an NVIDIA A100 GPU.

Performance assessment
Several classification metrics were adopted to evaluate the 
model performance in cross-validation and independent tests. 
Macro-averaged scores of prediction accuracy, while F1 score, 
AUC, and AUPRC represent the general model capacity. The 
ROC curves and multiclass confusion matrices assist in sum-
marizing the classification result for multiple categories when 
predicting each type of secreted substrate proteins. The AUC 
and AUPRC for predicting each type of secreted protein were 
also recorded. In performance comparison with other binary 
classification methods for secreted protein prediction, accuracy 
(ACC), sensitivity (SN), specificity (SP), precision (PR), F1 
score (F1), and MCC were adopted to present comprehensive 
comparisons.

where TP, TN, FP, and FN denote the numbers of true positives, 
true negatives, false positives, and false negatives, respectively. 
All metrics were computed by the Python package scikit-learn 
(https://scikit-learn.org/).

To visualize the secreted protein embeddings derived from 
the DeepSecE model, a Python package umap-learn (https://
github.com/lmcinnes/umap) [39] was used for dimension 
reduction. The size of the local neighborhood and the mini-
mum distance between embedded points, 2 key parameters for 
the UMAP algorithm, was set to 15 and 0.1, respectively.

Ablation study
The model architecture of T4SEfinder [31] was selected as the 
model baseline, which used the protein language model TAPE 
[42], and a linear probing strategy to train the classifier to dis-
tinguish various types of secreted proteins. We attempted to 
substitute the state-of-the-art general-purpose protein language 
model ESM-1b [38] for the previous pretrained model. We fine-
tuned the last transformer layer instead of linear probing. The 
batch size and maximum epoch numbers of the linear probing 
model were set to 256 and 100, respectively. When fine-tuning, the 
batch size and the number of epochs were reduced to 32 and 
30, respectively, considering the training efficiency. In addition, 
a trilayer CNN that leveraged the PSSM profiles was also 

(2)

(3)ACC =
TP + TN

TP + FP + TN + FN

(4)SN =
TP

TP + FN

(5)SP =
TN

TN + FP

(6)PR =
TP

TP + FP

(7)F1 =
2

1∕SN + 1∕PR

(8)

MCC =
(TP × TN) − (FN × FP)

√
(TP + FN) × (TP + FP) × (TN + FP) × (TN + FN)
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trained. The PSSM profiles were generated by the command 
“psiblast -db uniref50 -num_iterations 3 -matrix BLOSUM62 
-num_alignments 100”. The XGBoost classifier was trained 
using the XGBoost library (https://github.com/dmlc/xgboost). 
The number of estimators and learning rate were set to 1,000 
and 0.1, respectively. We evaluated their performance through 
cross-validation and independent tests and compared them 
with our final DeepSecE model.

Prediction pipeline for secretion systems
We combined the prediction procedure of Gram-negative bac-
terial secretion systems and corresponding substrate proteins 
and developed a complete pipeline. Macsyfinder (TXSScan 
v1.0.1, https://github.com/macsy-models/TXSScan) [11] was 
used to detect the secretion system (T1SS to T4SS and T6SS) 
gene clusters by searching the colocalized component proteins 
by hmmsearch according to the definition of colocalization 
rules (e.g., maximal number of genes between 2 consecutive 
components and minimum number of component genes). We 
also distinguished the protein secretion T4SS from the conju-
gation-related T4SS in Gram-negative bacteria based on the 
validated profiles and models of Macsyfinder. The deep learning 
model DeepSecE then predicted the potential secreted proteins 
within all coding sequences in a bacterial genome according 
to the existing secretion systems. It outputs the putative secreted 
protein sequences with the predicted secretion systems and 
scores.

Sequence saliency map
DeepSecE can infer the importance of the amino acids along 
the protein sequence through the sequence attention in the 
secretion-specific transformer layer. The attention matrix was 
transformed into saliency scores to measure the relation with 
protein secretion (accumulating the output from all attention 
heads and averaging the influence of an amino acid on other 
positions), which can be formulated as follows:

where attnhij denotes the attention score of the hth attention 
head between the amino acid residues at position i and j and 
L denotes the length of the protein sequence. The sequence 
saliency map was then plotted by a Python package Logomaker 
v0.8 (https://github.com/jbkinney/logomaker) [69] to illustrate 
the property of the secreted protein sequence and important 
sequence regions.

Linking secreted proteins to genomes
IGV [46] (igv.js, https://github.com/igvteam/igv.js) enables us 
to display the secretion system gene cluster and secreted 
substrate proteins along the bacterial genome. The genomic 
sequence of a chromosome or plasmid and the RefSeq anno-
tation (GFF3 format) were loaded into the genome browser. 
The secretion system component proteins and secreted proteins 
with the predicted scores were also displayed in IGV tracks.

Genome-wide prediction of secreted proteins
The genomes of 5 representative Gram-negative bacteria (T3SE: 
P. syringae pv. tomato str. DC3000 and S. enterica subsp. enterica 
serovar Typhimurium str. LT2; T4SE: L. pneumophila subsp. 
pneumophila str. Philadelphia 1; T6SE: P. aeruginosa PAO1 and 

V. cholerae O1 biovar El Tor str. N16961 chromosome II) for 
studying the secretion system and substrate proteins were used 
to illustrate the capacity of DeepSecE to verify the known 
secreted proteins and provide novel candidates. The experi-
mental secreted proteins were assigned to the protein sequences 
that matched the existing experimental-verified ones by BLASTp. 
The recall score was calculated to represent the proportion of 
experimental secreted proteins that DeepSecE detected under 
different thresholds:

where Nexp denotes the number of experimentally verified 
secreted proteins, while Nexp∩pred is the size of the intersection 
of experimental and predicted proteins. The identities of the 
novel candidates encoded in these genomes against experimen-
tal proteins were computed as well. We used the web servers of 
Effectidor (https://effectidor.tau.ac.il/) and T4SEfinder (https://
tool2-mml.sjtu.edu.cn/T4SEfinder_TAPE/) for performance 
comparison.

We also downloaded complete bacterial genomes from the 
Pathosystems Resource Integration Center (PATRIC) [70] data-
base (119 reference genomes and 1,796 representative genomes) 
and retained the Gram-negative bacteria. We found 1,109 rep-
licons within 854 assemblies to include type I to IV and VI 
protein secretion systems. We then “fed” their protein coding 
sequences into the prediction model and obtained a large num-
ber of potentially secreted proteins. An abundance score was 
calculated to represent the relative number of secreted proteins 
in a bacterial genome:

where Nsec and NCDS represent the number of secreted proteins 
and coding sequences in the genome, respectively.

Web server implementation
Bacterial genomes in the database are typical strains of Gram-
negative bacteria derived from MacSyDB/TXSSdb (http://
macsydb.web.pasteur.fr) with validly predicted secretion sys-
tems [11]. We downloaded the protein-coding sequences from 
NCBI RefSeq (https://www.ncbi.nlm.nih.gov/refseq/) and 
reannotated the secretion systems (T1SS to T4SS and T6SS) by 
Macsyfinder [11]. Secreted proteins were then predicted using 
the DeepSecE model. The PostgreSQL database (https://www.
postgresql.org/) was used to store all putative secretion systems 
and substrate proteins.

The web server interface was developed using Python3 and 
the Flask framework (https://flask.palletsprojects.com/) as the 
backend. Users can choose to predict type I to IV and VI 
secreted proteins from the input protein sequences or bacterial 
whole-genome sequences. The latter option allows genome-wide 
identification of both secretion systems and substrate proteins. 
The prediction jobs are submitted to the computing server and 
processed by the GPU. The front end was implemented by a 
progressive JavaScript framework named Vue.js (https://vuejs.
org/). Apache Echarts (https://echarts.apache.org/) and igv.js 
[46] were used for visualization in the browse pages.
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