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Abstract
Motivation: Proteins play crucial roles in biological processes, with their functions being closely tied to thermodynamic stability. However,
measuring stability changes upon point mutations of amino acid residues using physical methods can be time-consuming. In recent years,
several computational methods for protein thermodynamic stability prediction (PTSP) based on deep learning have emerged. Nevertheless,
these approaches either overlook the natural topology of protein structures or neglect the inherent noisy samples resulting from theoretical
calculation or experimental errors.

Results: We propose a novel Global-Local Graph Neural Network powered by Unbiased Curriculum Learning for the PTSP task. Our method first
builds a Siamese graph neural network to extract protein features before and after mutation. Since the graph’s topological changes stem from
local node mutations, we design a local feature transformation module to make the model focus on the mutated site. To address model bias
caused by noisy samples, which represent unavoidable errors from physical experiments, we introduce an unbiased curriculum learning method.
This approach effectively identifies and re-weights noisy samples during the training process. Extensive experiments demonstrate that our
proposed method outperforms advanced protein stability prediction methods, and surpasses state-of-the-art learning methods for regression
prediction tasks.

Availability and implementation: All code and data is available at https://github.com/haifangong/UCL-GLGNN.

1 Introduction

Proteins play an essential role in most biological processes,
and their functions are realized through the dynamic struc-
tures (Frauenfelder et al. 1988, Li et al. 2022). Gaining
insights into protein functions through the dynamic changes
of their attributes (e.g. three-dimensional structure, thermody-
namic stability) can help us better understand the fundamen-
tals of life (Park et al. 2004). For example, certain diseases
result from a single amino acid residue alteration, leading to a
significant difference in protein thermodynamic stability that
is closely related to the disease’s molecular mechanism (Hartl
2017). Recent years have witnessed the great success of the
protein 3D structure prediction based on deep learning
(Jumper et al. 2021), which accelerates the traditional folding
structural prediction task from months to hours. Similarly, es-
timating the change of protein thermodynamic stability upon
amino acid mutations using conventional physical approaches
(Marabotti et al. 2021) is time-consuming and laborious.

Therefore, accurate computational approaches for protein
thermodynamic stability prediction (PTSP) are needed, which
will contribute to research on mutation-induced diseases and
precision medicine.

PTSP aims to quantitatively predict the change in protein
thermodynamic stability, denoted as DDG (Stefl et al. 2013,
Pancotti et al. 2022), representing the difference between
Gibbs free energies (DG). The Gibbs free energy DG is used to
estimate the stability change of a protein from unfolding state
to folding state. When a mutation occurs in an amino acid, it
will disrupt the interaction network of amino acid residues,
leading to changes in thermodynamic stability. For the folding
protein without mutation, we refer it as a wide-type with
Gibbs free energy change DGw. Conversely, the folding pro-
tein with amino acid mutation is called mutant structure with
Gibbs free energy change DGm. Thus, the difference between
Gibbs free energy is obtained with the formulation
DDG ¼ DGm � DGw.
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Researchers have made great efforts (Pancotti et al. 2022)
in the field of thermodynamic stability and developed several
deep learning-based approaches for DDG prediction
(Pandurangan et al. 2017, Pucci et al. 2018, Montanucci et al.
2019, Li et al. 2020, Benevenuta et al. 2021). Unlike the
computationally demanding methods based on biophysical
modelings such as molecular dynamics simulation, deep-
learning-based methods that extract features from protein
sequences and structure have entered the mainstream.
However, there remain two crucial unsolved problems in the
way to provide more reliable predictions of thermodynamic
stability upon point mutations: (i) The above-mentioned
works either ignore the natural topology of proteins nor ne-
glect the importance of the mutated site, which is the essential
cause of topological changes of mutant proteins. (ii) The noisy
samples are unavoidable in the PTSP task as the DDG
obtained by the experimental values could be affected by the
environment and human operation. However, the previous
works have neglected the noisy samples for the PTSP task,
which influences the model generalization ability and
robustness.

To address the above-mentioned challenges, we propose a
Global-Local Graph Neural Network enhanced with
Unbiased Curriculum learning (GLGNN-UCL) to predict
changes in protein thermodynamic stability. GLGNN-UCL
represents proteins as graphs, with amino acids as nodes and
residue interactions as edges. We first construct a Siamese
graph attention network (GAT) (Veli�ckovi�c et al. 2018) to
prediction DDG based on the global feature, the satisfactory
accuracy showing that the geometric information is quite im-
portant. Still, the single point mutation site’s information, re-
sponsible for alterations in residue interactions (i.e. graph
topology) in proteins, is not well considered. To address this
issue, we devise a local feature transformation flow to en-
hance the model’s ability to represent the local mutated site’s
features.

More importantly, we propose a novel unbiased curriculum
learning method to handle the inherent noisy samples in the
PTSP task. We develop a simple yet effective hard sample se-
lection function that automatically identifies noisy samples
and adjusts their weights, preventing the model from being
influenced by noise samples. Our approach demonstrates
state-of-the-art performance on common benchmarks com-
pared to other methods. The contributions of this work are:

• We propose a framework named GLGNN-UCL to predict
the change of protein thermodynamic stability upon point
mutation. GLGNN-UCL exploits a Siamese graph neural
network to represent the structure of the protein before
the mutation and after the mutation. Followed by the logic
of the nature of amino acid mutations, we use the local
node feature to enhance the global feature representation
to boost the performance.

• We elaborate an unbiased curriculum learning approach
to handle the intrinsic noisy samples in the thermody-
namic stability prediction task, which could effectively dis-
tinguish and reweights the noisy samples thus avoiding the
model from being affected by the noise.

• We contribute a benchmark for PTST task based on graph
structure, which includes a training-validation set with
2548 samples and 2 independent test sets with 852
samples.

• Extensive experiments on our benchmark demonstrate
that our GLGNN-UCL not only significantly exceeds the
previous state-of-the-art methods for thermodynamic sta-
bility prediction but also outperforms methods that aim to
handle the noisy samples for regression tasks.

2 Related work

2.1 Protein thermodynamic stability prediction

Several deep learning methods have been employed to predict
the changes in thermodynamic stability. INPS (Fariselli et al.
2015) adopted SVM regression to learn the biological features
from the protein sequences. DynaMUT2 (Rodrigues et al.
2021) use the random forest to predict the protein’s thermo-
dynamic stability change based on the graph signatures fea-
tures of molecular. SDM (Pandurangan et al. 2017) used a set
of conformationally constrained substitution tables to calcu-
late the difference in stability between the wild-type and mu-
tant structure. PopMusicSym (Pucci et al. 2018) selected
ANN to predict DDG with statistical potentials and solvent
accessibility of the modified residue. DDGun3D (Montanucci
et al. 2019) provided an untrained method introducing anti-
symmetric features based on evolutionary information.
ThermoNet (Li et al. 2020) generated voxelized features
according to the biophysical properties around the mutation
site, and treated protein structures as if they were multi-
channel 3D images. ACDC-NN (Benevenuta et al. (2021)
built a Siamese neural network to extract the sequence and
structural features from both the wild-type and mutant pro-
tein structure. However, these approaches ignore the topolog-
ical information of residue interaction among the protein
structure and the influence of noisy samples has not been dis-
cussed. KORPM (Hernández et al. 2023) proposed a simple
residue-based orientational potential model uses three back-
bone atoms to predict the thermodynamic stability change
upon mutation.

2.2 Curriculum learning and regression

Curriculum learning (CL) (Bengio et al. 2009) stems from the
idea that learning from easy to hard could improve the gener-
alization ability of the model. Various works have demon-
strated the merit of the CL in computer vision (Gong et al.
2022) or natural language processing (Platanios et al. 2019).
Recently, Wang et al. (2021) propose the CurGraph that aims
at solving the graph classification task by estimating the com-
plexity of the graph’s topology. However, there are only sev-
eral works that focus on training the model for a regression
task with the curriculum, as the regression task is different
from the classification task according to Yang et al. (2021).
Castells et al. (2020) embeds the CL into regression task by
proposing the SuperLoss that automatically decreases the con-
tribution of samples with a large loss.

Regression based on imbalanced data is a common issue in
the real world, especially in the domain of bioinfomatics.
However, most efforts are mainly based on SMOTE (Torgo
et al. 2013). Yang et al. (2021) proposed a deep imbalance re-
gression (DIR) framework to handle this issue by taking both
label and feature distribution calibration into account.
Nevertheless, the DIR is mainly designed for the task in the
domain of computer vision and natural language processing,
and does not take the distance between targets into account.
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2.3 Graph neural networks

Graph Neural Networks (GNN) are powerful tools to model
the non-Euclidean data. Inspired by the convolution opera-
tion in the imaging data, Graph Convolutional Network
(Kipf and Welling 2017) (GCN) was proposed to handle
graph data. GraphSAGE (Hamilton et al. 2017) extends the
GCN based on the idea of inductive learning. Graph
Attention Network (Veli�ckovi�c et al. 2018) (GAT) learns a
graph feature transformation with the masked self-attention
mechanism. Graph Isomorphism Network (GIN) (Xu et al.
2019) provides a theoretical foundation for the expressive
power of GNNs and the design of a powerful GNN.

Numerous studies have applied graph neural networks
(GNNs) to biological problems, which includes protein design
(Ingraham et al. 2019), feature representation learning (Jing
et al. 2021), expression referring (Yang et al. 2020a,b), rela-
tionship prediction (Satorras et al. 2021), survival gene path
analysis (Liang et al. 2022), disease diagnosis (Xing et al.
2022), medical image analysis (Huang et al. 2022), and hu-
man action analysis (Yan et al. 2023). However, none of these
works focus on point mutations. Our paper introduces a
global local GNN based on GAT for superior representation
and transformation of local mutation site features.

3 Methodology

Missense genetic mutations (i.e. a mistake in the DNA which
results in the wrong amino acids) alter the corresponding amino
acid residues in the protein sequences. The variation in physico-
chemical properties like charge and hydrophobicity of the resi-
due is very likely to affect the residue-interaction network. All
residues in the neighborhood of the mutation site are forced to
leave the original coordinates to accommodate the modified
side-chain and form another stable conformation. We used the
Rosetta (Alford et al. 2017) FastRelax protocol to obtain the ini-
tial protein structure before and after mutation. The aim of the
protein thermodynamic stability prediction task is to quantify
the values of DDG by learning efficient biophysical features
from both the wild-type and mutant structures.

3.1 Global-local graph neural network

Considering that proteins exhibit a natural graph-like struc-
ture and input protein structures are inherently paired, we de-
velop a Siamese graph neural network to extract richly
structured protein features. As protein mutations arise from
point mutations, the graph neural network should be capable
of concentrating on the mutated site and its surrounding
regions. Thus, we take the graph attention networks (GAT)
(Veli�ckovi�c et al. 2018) as the backbone network of the
Siamese graph neural network to extract the initial graph rep-
resentations of the proteins. To learn the common knowledge
of the nonmutated protein points, the upper part and the
lower part of the Siamese graph network share the same
weights. Formally, given a set of N protein node features h ¼
f h
!

1; h
!

2; . . . ; h
!

Ng 2 RN�F with the number of each node
feature F, we first apply a shared attention mechanism to cal-
culate the similarity ratios between a node and its neighboring
nodes. For two nodes with index i and j, the importance aij of
the node j’s feature to that of node i is formulated as:

aij ¼ softmaxjðeijÞ ¼
expðeijÞP

k2N i
exp ðeikÞ

; (1)

eij ¼ LeakyReLUð a!>½W h
!

ijjW h
!

j�Þ; (2)

where W 2 RF0�F is a shared transformation matrix, a!2
R2F0 is a scoring weight vector, N i is the one-hot neighbor-
hood of node i, jj denotes the concatenation, and the softmax
operation is used for normalization. Then we aggregate each
node feature with its one-hot neighbors based on their similar-
ity ratios, and adopt a multi-head concatenation operation to

stabilize the training process. The aggregated feature h
!

i

0
of

node i is calculated by:

h
!0

i ¼ jj
K
k¼1r

X
j2N i

ak
ijW

k h
!

j

 !
; (3)

where K is the number of attention heads, ak
ij denotes the at-

tention coefficients in the kth attention head, and Wk denotes
the transformation matrix in the kth head. Finally, we use the
average pooling after the GAT layer to generate global pro-
tein structure representations.Although the above-mentioned
Siamese graph attention network can represent the structural
mutation process of proteins more effectively than the previ-
ous methods, it still lacks attention to local mutated nodes,
which is the root cause of changes in protein topology and
thermal stability. Thus, we further propose a novel and light-
weighted module named Local Feature Transformation Flow
(LFTF), to enhance the model’s ability to capture the local
mutated node. Let xa be the local feature vector ahead of the
GAT layer shaped 1� a, xb be the local feature vector behind
the GAT layer shaped 1� b, the refined local feature vector

Algorithm 1. Unbiased Curriculum Learning Algorithm.

Require: P ¼ fp1; . . . ; pBg, Y¼fy1; . . . ; yBg
1: P denotes the prediction of the samples in mini-batch

2: Y denotes the label of the samples in mini-batch

3: B denotes the number of samples in mini-batch D denotes

the queue to store the samples’ difficulties.

4: for i¼1 to B do

5: Calculate sample’s difficulty hi with Eq. (5) and store the

value to queue D.

6: end for

7: Calculate the threshold T to filter the hard samples with Eq. (6).

8: Define the loss L of current mini-batch and the schedule S of

current mini-batch with Eq. (9).

9: for i¼1 to B do

10: Calculate the loss li of the sample.

11: if hi < T then

12: L Lþ li

13: else

14: L Lþ S � li
15: end if

16: end for

17: Update model parameters with the loss L.
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after Local Feature Transform (LFT) module f ð�Þ is repre-
sented by y with shape 1� b. This process is represented as:

y ¼ f ðxaÞ þ xb; (4)

where f ð�Þ denotes a fully connected layer with a input chan-
nels and b output channels. After that, we update the current
node feature with y and send this feature vector into the fur-
ther GAT layer and LFT layer until the last layer of the graph
neural network. By taking the advantage of the LFTF module,
the error during the training process could better propagate to
the local node, thus our model could achieve better
performance.

3.2 Unbiased curriculum learning

To resolve the unavoidable error of the thermodynamic stabil-
ity change, which is a common phenomenon in both experi-
ments and the chemical calculation, we propose a novel
unbiased curriculum learning (UCL) method to train the
model end to end, which is shown in Algorithm 1. In the fol-
lowing three sections, we elaborate on the key concepts in
UCL, which include the difficulty metric function and the cur-
riculum scheduler (Fig. 1).

3.2.1 Difficulty metric function
The difficulty metric function is crucial in curriculum learn-
ing. In previous works, researchers typically use the loss of
samples during training as the difficulty metric function.
However, in graph regression tasks, a larger loss for a sample
does not necessarily imply that the sample is harder than
others, as the larger loss may result from model initialization
or sample scarcity. For example, a sample with a larger DDG
might have a larger loss due to model initialization. To fairly
select difficult samples from the current mini-batch, which
contains samples with both large and small DDG changes, we
propose the following unbiased hardness function that

eliminates the influence of ground truth values. Furthermore,
to address the issue of the hardness value significantly increas-
ing when GT (i.e. the denominator of the formula Equation 5)
is close to 0, we propose the piece-wise function shown
below:

HðxÞ ¼
ðxgt � xpredÞ2

absðxgtÞ
absðxgtÞ � K

ðxgt � xpredÞ2 absðxgtÞ < K

;

8><
>: (5)

where the sample is denoted by x with ground-truth label xgt

and the predicted value is represented by xpred, the hardness
of sample x is represented as H(x). K represents the piece coef-
ficient. Given the prior knowledge that the ground truth value
DDG for the mutation of amino acids is typically normally
distributed (see Fig. 2), we set K to 1. Furthermore, as

Figure 1. The pipeline of the proposed GLGNN-UCL: an unbiased curriculum learning-powered global-local graph neural network to predict the

thermodynamic stability upon point amino acid mutation. Given an input structure and an amino acid mutation, we use Rosetta to obtain the wide-type

and the mutant protein structure, which is shown in the purple and yellow part in the figure. The mutated amino acid is shown in a lighter color on the

graph. The protein structure graphs are processed by a Siamese graph neural network with the Local Feature Transformation Flow (LFTF) module, to

obtain its transformed feature representation. After that, we use the tailor-designed unbiased curriculum loss to train the model end to end.

Figure 2. The distribution the DDG values in the training set.
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illustrated in Fig. 2, the model tends to overfit on samples
with ground-truth values around 0, as they constitute a large
portion of the entire dataset. In this situation, samples with
larger ground truth values are likely to be assigned a larger
loss. However, the difficulty of samples may be influenced by
factors such as intrinsic topological structure and node fea-
tures, in addition to the ground truth value. Thus, our unbi-
ased design addresses this issue from another perspective.
Based on the above unbiased measurement function, we de-
sign an adaptive threshold to assess each sample’s difficulty
according to the average and deviation of sample difficulties
in a mini-batch, which is formulated as follows (Fig. 3):

Tcur ¼ havg þ a � hstd; (6)

where a is a hyper-parameter for hard sample mining which is
set to 1 by default. The higher a is, the fewer samples are
regarded as the hard sample. The havg and hstd denote the av-
eraged difficulty and the standard deviations of difficulty in
the current batch, which are defined below:

havg ¼
1
N

Xn¼N

n¼1

HðxnÞ; (7)

hstd ¼
1
N

Xn¼N

n¼1

ðHðxnÞ � havgÞ2; (8)

where the number of samples contained in current mini-batch
is represented by B.

3.2.2 Scheduler design
After identifying difficult samples using the aforementioned
methods, it is necessary to design a scheduler function for
noisy samples to adaptively adjust their importance. The
question arises: should we learn from easy to hard samples
(i.e. weight the hard samples from 0 to 1) or from hard to
easy (i.e. weight the hard samples from 1 to 0)? Training
the model from easy to hard may lead to overfitting on
noisy samples, even though the model is not affected by dif-
ficult samples initially. On the other hand, learning from
hard to easy, an anti-curriculum paradigm, offers several
advantages: (i) The model can extract more topological in-
formation from hard samples on the amino acid graph in
the early stages, thereby avoiding overfitting on noisy out-
liers in the final stage. (ii) During the initial training
rounds, the model may not accurately identify difficult
samples. This uncertainty could cause the model to misclas-
sify easy samples as hard samples. As a result, learning

Figure 3. Analysis of the feature importance. “W/o” indicates “Without”.
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from easy to hard may lead to the inadvertent discarding of
misjudged “hard samples” (which are actually easy sam-
ples) at the beginning, adversely affecting the model’s gen-
eralization ability. Therefore, we choose to learn from hard
to easy. Let E be the number of training epochs, e denotes
the current epoch, and the anti-curriculum schedule is de-
fined as:

SðeÞ ¼ 1� e
E
: (9)

3.3 Loss function

By taking the above-mentioned curriculum paradigm into ac-
count, let hi be difficulty of ith sample in a mini-batch that is
obtained by Equation 5., xi and yi denotes the predicted value
and ground truth value of the DDG for sample i, the re-
weighted loss l0i is defined as:

l0i ¼
kxi � yik2 hi � Tcur

S � kxi � yik2 hi > Tcur

:

(
(10)

The final loss with respect to a mini-batch is defined as:

L ¼ 1
N

XN
i¼1

l0i: (11)

4 Experiments

4.1 Dataset

The training dataset in this study is derived from FireprotDB
(Stourac et al. 2021), which contains 2518 samples upon
single-point mutation after removing replicated mutations
and the homologous proteins against the test data (BLAST
P-value � 0.001) (Li et al. 2020). We perform the 5-fold
cross-validation on the training set, which means using 2014
samples for training and selecting the best performing model
on the remaining 504 samples in the validation set. The Ssym
dataset (Pucci et al. 2018) that contains 684 mutated samples
is used for testing. PDBrenum Faezov and Dunbrack Jr
(2021) was used to convert the mutation positions in the data-
base to those in the PDB structures. The procedure to repre-
sent the proteins in the form of the graph are summarized as
follow. If the distance between the alpha C of the amino acids
<5 Å, we add a connecting edge between two amino acid
nodes. For the feature of the nodes (i.e. amino acid residues)
in the graph, they are obtained from the following three cate-
gories: (i) Amino acid encoding, including 5D representation
from skip-gram model (Lv et al. 2021), 7D one-hot vector
according to the amino acid classification, 8D vector summa-
rizing several basic biophysical properties of a single residue.
(ii) Energy encoding, 20D representation from Rosetta scor-
ing functions (Alford et al. 2017), including both physics-
based (Van der Waals interactions, solvation, hydrogen
bonds) and knowledge-based energy terms (protein backbone,
side-chains, torsions). (iii) Evolutionary encoding, 20D repre-
sentation derived from multiple sequence alignment against
the Uniclust_30 database (Mirdita et al. 2017) by hhblits
(Remmert et al. 2011). To sum up, we obtain a 60D feature
to encode each node in the graph. We obtain the edge

information of the graph from the interaction of amino acid
residues.

4.2 Implementation and metric

All the models are trained with NVIDIA RTX 3090 GPU
with 24 GB memory. The framework is implemented in
PyTorch 1.10.1 and PyTorch Geometric 2.0.2 (Fey and
Lenssen 2019) and CUDA 10.6. AdamW is applied to opti-
mize the model. We train the models at a learning rate of
0.002, batch size at 256, training epoch at 50, and weight de-
cay at 0.001. It is worth noting that as PyTorch Geometric
does not guarantee reproduction, the results of the SiamGNN
methods and the LIR-based methods are obtained by averag-
ing the result of five independent experiments with 5-fold
cross-validation. We follow the previous works (Li et al.
2020, Benevenuta et al. 2021, Pancotti et al. 2022) to use the
Root Mean Square Error (RMSE), Pearson Correlation
Coefficient (PCC), and Anti-symmetric score as the metric for
model evaluation.

4.3 Comparison with state-of-the-art methods

We evaluate our GLGNN model in three ways: (i) We com-
pare it with previous top-performing models to demonstrate
its effectiveness. (ii) We test our Siamese graph network model
with three popular graph neural network backbones and our
GLGNN backbone. (iii) We conduct experiments on
GLGNN-UCL and other advanced methods addressing noisy
samples in regression tasks. The test set is divided into
“Direct” (mutations in the natural protein) and “Reverse”
(mutations prior to the natural protein) to highlight the
proposed methods’ impact (Table 1).

The results comparing various network structures are
shown in the upper part of Tables 2 and 3. By utilizing
Siamese graph representation, most graph-based methods sur-
pass previous neural network-based methods. GAT outper-
forms other methods because it can focus on the mutated site.
More importantly, our GLGNN, which uses a tailored local
feature transformation flow, can better learn local features.
As a result, GLGNN not only outperforms previous neural
network-based methods but also significantly surpasses other
graph representation methods.

Regarding learning methods aimed at handling noisy sam-
ples in regression tasks, we compare the proposed GLGNN-
UCL with two advanced learning methods in the LIR
(Learning with Imbalanced Regression) part of Tables 2 and
3. We carefully adjust their hyperparameters to ensure opti-
mal performance. On the Ssym benchmark, “SL” and “DIR”
slightly improve the model’s performance. However, on the
P53 benchmark, “DIR” and “SL” fail to enhance the model’s
performance. In contrast, the proposed “UCL” boosts perfor-
mance on both Ssym and P53 benchmarks. The reason behind
this might be that “DIR” mainly focuses on the imbalance is-
sue in regression tasks and does not sufficiently consider noisy
samples. The rebalancing strategy in “DIR” further increases
noise in the training data. As for “SL”, it overlooks the intrin-
sic label value bias. Consequently, the proposed “UCL”

Table 1. Details of dataset used in our experiments, including dataset

names, types, and number of mutated proteins.

Dataset FDB FDB Ssym P53

Type Training Validation Testing Testing
Size 2014 504 684 168
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approach achieves state-of-the-art results among previous
works by reducing the influence of samples with different
ground truth values.

4.4 Ablation study

Ablation on the model structure. Table 4 presents the ablation
study focusing on the model structure. In this table, “Global”
refers to the vanilla graph representation method (GAT).
“GlobalþLFA (local feature aware)” represents training the
model under the supervision of both global features and local
mutated site features by concatenating them into a single fea-
ture vector. “GlobalþLFTF (local feature transform flow)”

denotes training the model with the local feature transform
flow. The results show that incorporating local information
improves the accuracy of protein thermodynamic stability
prediction, as protein structure mutations originate from mu-
tated amino acids (i.e. local mutated nodes). Moreover, the
transform layer effectively enhances performance, linearly
transforming the local feature with only 0.05 MB parameters.

Ablation on the Unbiased Anti-curriculum method. In
Table 5, we assess three curriculum approaches. M1 is a bi-
ased method using loss as a difficulty measure. M2 uses a pro-
posed unbiased difficulty metric and an easy-to-hard
scheduler (i.e. S ¼ e=E). M3 is an unbiased anti-curriculum
method with a hard-to-easy schedule. From Table 5, both
proposed M1 and M3 outperform the baseline, indicating
that the “Unbiased” operation effectively distinguishes hard
samples. The results between M1 and M3 support the as-
sumption in the “scheduler design” section (Section 3.2.2).
All the results surpass the baseline, demonstrating that down-
weighting samples with noise is effective.

Sensitivity analysis on the hard sample metric function. For
noisy sample mining, we provide a sensitivity analysis of the

Table 2. Comparison with state-of-the-art methods on Ssym benchmark.a

Setting Methods RMSE PCC Anti-symmetric

Direct Reverse Average Direct Reverse Average rdiv�rev d

Previous SOTA SDM (Pandurangan et al. 2017) 1.74 2.28 2.01 0.51 0.32 0.42 �0.75 �0.32
PopMusicSym (Pucci et al. 2018) 1.58 1.62 1.60 0.48 0.48 0.48 �0.77 �0.06
DDGun3D (Montanucci et al. 2019) 1.42 1.46 1.44 0.56 0.53 0.55 �0.99 �0.04
ThermoNet (Li et al. 2020) 1.56 1.55 1.56 0.47 0.47 0.47 �0.96 �0.01
ACDC-NN (Benevenuta et al. 2021) 1.45 1.45 1.45 0.57 0.57 0.57 �0.98 �0.05
KORPM (Hernández et al. 2023) 1.28 1.38 1.33 0.57 0.49 0.53 �0.88 �0.15

SiamGNN GraphSAGE (Hamilton et al. 2017) 1.49 1.48 1.4860.02 0.38 0.39 0.3960.02 �0.98 �0.02
GAT (Veli�ckovi�c et al. 2018) 1.34 1.34 1.3460.01 0.55 0.55 0.5560.01 �0.99 �0.02
GIN (Xu et al. 2019) 1.40 1.41 1.4060.01 0.48 0.47 0.4760.02 �0.98 �0.02
GLGNN 1.23 1.23 1.2360.01 0.63 0.63 0.6360.01 �0.99 �0.03

LIR GLGNNþSL (Castells et al. 2020) 1.22 1.23 1.2260.01 0.64 0.64 0.6460.01 �0.99 �0.02
GLGNNþDIR (Yang et al. 2021) 1.23 1.24 1.2360.01 0.64 0.65 0.6460.01 �0.99 �0.02
GLGNN1UCL 1.21 1.20 1.2060.02 0.66 0.66 0.6660.02 �0.99 �0.02
GLGNN1UCLb 1.25 1.24 1.2460.02 0.62 0.63 0.6360.02 �0.99 �0.02

a In SiamGNN, we compare different backbones based on the SiamGNN framework. In LIR (learning with imbalance regression), we compare the
proposed UCL with SL (NeurIPS’20) and DIR (ICML’21) based on our GLGNN.

b Separately averaging the results of five folds. Unique best results and our methods are marked in bold.

Table 3. Comparison with state-of-the-art methods on the P53 benchmark.a

Setting Methods RMSE PCC Anti-symmetric

Direct Reverse Average Direct Reverse Average rdiv�rev d

NN-based ThermoNet (Li et al. 2020) 2.01 1.92 1.96 0.45 0.56 0.50 �0.97 �0.02
ACDC-NN (Benevenuta et al. 2021) 1.67 1.72 1.70 0.62 0.61 0.61 �0.99 �0.01

SiamGNN GraphSAGE (Hamilton et al. 2017) 1.74 1.74 1.7460.02 0.44 0.44 0.4460.01 �0.98 �0.02
GAT (Veli�ckovi�c et al. 2018) 1.77 1.77 1.7760.01 0.54 0.55 0.5460.01 �0.99 �0.02
GIN (Xu et al. 2019) 1.76 1.77 1.7660.02 0.49 0.48 0.4860.02 �0.99 �0.02
GLGNN 1.57 1.58 1.5760.01 0.61 0.60 0.6160.01 �0.99 �0.02

LIR GLGNNþSL (Castells et al. 2020) 1.57 1.58 1.5760.01 0.59 0.59 0.5960.02 �0.99 �0.03
GLGNNþDIR (Yang et al. 2021) 1.61 1.61 1.6160.02 0.59 0.60 0.5960.02 �0.99 �0.02
GLGNN1UCL 1.55 1.54 1.5560.02 0.65 0.65 0.6560.02 �0.99 �0.02
GLGNN1UCLb 1.60 1.59 1.5960.02 0.60 0.60 0.6060.02 �0.99 �0.02

a In SiamGNN, we compare different backbones based on the SiamGNN framework. In LIR (learning with imbalance regression), we compare the
proposed UCL with SL (NeurIPS’20) and DIR (ICML’21) based on our GLGNN.

b Separately averaging the results of five folds. Unique best results and our methods are marked in bold.

Table 4. Ablation study of the model structure based on the Ssym test

set.a

Metric Global GlobalþLFA GlobalþLFTF

RMSE 1.3460.02 1.2760.01 1.2360.01
PCC 0.5560.02 0.6060.01 0.6360.01

a “LFA” denotes the “local feature aware” module. “LFTF” denotes the
“local feature transformation” module.
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hyperparameter a in Equation 6, as shown in Table 6. The
results demonstrate that all the a values significantly outper-
form the baseline method, indicating the effectiveness of our
noisy sample detection algorithm.

5 Discussion and conclusion

The analysis of feature importance is shown in Fig. 2. The
GLGNN-UCL model, with all features included, surpasses
other models, providing superior Directed and Reversed PCC
and lower RMSE values, indicating a strong correlation with
low error rates. Models lacking amino acid or energy encod-
ing show slightly reduced PCC and slightly increased RMSE,
indicating minor losses in accuracy. The worst-performing
model lacks evolutionary encoding, having the lowest PCC
and highest RMSE values, emphasizing the vital role of evolu-
tionary encoding. We think the reason might be that evolu-
tionary encoding aids in understanding the intricate links
between protein sequences, structures, and functions, which
are key to stability predictions. Moreover, if a mutation
occurs in an evolutionarily conserved region, it’s likely to
have a significant impact on protein stability, which might
also be the reason why the evolutional feature could boost the
performance. Overall, these results highlight that each feature
encoding uniquely contributes to GLGNN’s performance,
with evolutionary encoding being particularly crucial. This
aligns with the idea that protein behavior, a complex phe-
nomenon, is influenced by a mix of factors, necessitating a di-
verse feature set in machine learning models predicting
protein behaviors.

Our study focuses on single-point mutations due to their
significant impact, using the GLGNN model. Although this
model could hypothetically predict the effects of multiple
mutations by treating each as an individual single-point muta-
tion, we discourage this due to potential complex, nonlinear
interactions between mutation sites. We’re developing a new
model to accurately predict both single and multiple-point
mutations for a more comprehensive mutation impact predic-
tion tool. For further wet-lab experiment, we outline a plan
which is available in the appendix.

In this study, we present GLGNN-UCL, a graph regression
method incorporating curriculum learning to address the prob-
lem of protein thermodynamic stability prediction. We first in-
troduce a custom-designed global-local graph network to
predict the thermodynamic change in proteins upon amino acid
mutation. Subsequently, we propose an unbiased curriculum

learning paradigm to handle noisy samples during training by
controlling the weight of these samples. Comprehensive experi-
mental results on a widely used benchmark confirm the superior
performance of our approach. It not only outperforms advanced
protein stability prediction methods based on neural networks
or graph neural networks but also demonstrates superiority
among state-of-the-art learning methods for regression predic-
tion tasks. Notably, our local feature transformation module
requires only 0.05 MB parameters but boosts performance by
approximately 4%. More interestingly, the custom-designed
UCL module enhances performance by 3% without any increase
in parameters.

In addition, our work not only addresses the gap in protein
thermodynamic stability prediction but also pioneers a way to
handle noisy samples in the field of graph regression.
Furthermore, we contribute a benchmark for evaluating
graph neural networks on the PTSP task. Future work will in-
volve delving deeper into the curriculum paradigm by explor-
ing tailor-designed schedulers and validating the performance
of our algorithm through wet laboratory experiments.
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