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Abstract

Bacterial type IV secretion systems (T4SSs) are versatile and membrane-spanning apparatuses, which mediate both genetic
exchange and delivery of effector proteins to target eukaryotic cells. The secreted effectors (T4SEs) can affect gene
expression and signal transduction of the host cells. As such, they often function as virulence factors and play an important
role in bacterial pathogenesis. Nowadays, T4SE prediction tools have utilized various machine learning algorithms, but the
accuracy and speed of these tools remain to be improved. In this study, we apply a sequence embedding strategy from a
pre-trained language model of protein sequences (TAPE) to the classification task of T4SEs. The training dataset is mainly
derived from our updated type IV secretion system database SecReT4 with newly experimentally verified T4SEs. An online
web server termed T4SEfinder is developed using TAPE and a multi-layer perceptron (MLP) for T4SE prediction after a
comprehensive performance comparison with several candidate models, which achieves a slightly higher level of accuracy
than the existing prediction tools. It only takes about 3 minutes to make a classification for 5000 protein sequences by
T4SEfinder so that the computational speed is qualified for whole genome-scale T4SEs detection in pathogenic bacteria.
T4SEfinder might contribute to meet the increasing demands of re-annotating secretion systems and effector proteins in
sequenced bacterial genomes. T4SEfinder is freely accessible at https://tool2-mml.sjtu.edu.cn/T4SEfinder_TAPE/.
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Introduction
Type IV secretion systems (T4SSs) are multiprotein nanoma-
chines widely distributed in both Gram-negative and Gram-
positive bacteria [1]. According to the transported substrates
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and their functions, T4SSs can be divided into the following
three categories: conjugation systems, DNA-uptake and -release
systems and effector translocator systems [2]. Unlike conjuga-
tive [3] and transformation systems mainly related to horizontal
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gene transfer, another type of T4SSs that delivers effector pro-
teins to target cells plays a crucial role in the virulence of
pathogens [4]. Pathogenic bacteria employ T4SSs to translocate
type IV secreted effectors (T4SEs) or protein-DNA complexes into
eukaryotic cytoplasm that disrupt the signal transduction of the
host cells and cause various diseases [1, 3, 5]. Previous stud-
ies have investigated specific T4SSs in Legionella pneumophila,
Coxiella burnetii, Brucella melitensis and other pathogenic bacteria
that transfer T4SEs into human cells [6]. The effector proteins
secreted by Dot/Icm T4SS in L. pneumophila are reported to target
cellular pathways controlling the intermembrane transport [7]
and help protect the pathogens.

Identification of T4SEs that can be translocated into the host
cells, with their pathogenic mechanism, has been attracting
an increasing interest due to the clinical significance. Many
experimental approaches [8] have been designed to discover
the existence of effector proteins in the eukaryotic cytoplasm,
including enzyme fusion, immunofluorescence detection, and
other proteomics methods. Although experiments can provide
reliable inference on effector proteins, it takes considerable time
and cost for the verification of all T4SE candidates.

After functional T4SEs were experimentally discovered
progressively, the biological features of verified effector proteins
allowed the development of computational approaches for the
prediction of T4SEs. Apart from traditional sequence similarity-
based methods, various machine learning and deep learning
algorithms [9–17] were utilized to train classification models to
distinguish potential secreted effectors from numerous non-
effector proteins. Amino acid composition, position-specific
scoring matrix (PSSM) [18] and structural information are
commonly extracted to characterize the representation for
protein sequences, while support vector machine (SVM) [19],
random forest (RF) [20] and convolutional neural network
(CNN) [21] might be the most popular machine learning
classifiers for T4SE prediction. PSSM is generally acknowledged
to capture the conservation patterns in biological sequences,
and accordingly prediction tools that use PSSM as the features
usually outperform other strategies. However, the generation
of PSSM requires extensive search of similar sequences in
large protein sequence databases like Uniref50 [22] by PSI-
BLAST [18]. The currently available bioinformatics tools are
incapable of making both rapid and accurate predictions for
T4SEs in pathogens. An online annotation tool can facilitate the
screening of putative T4SEs and the characterization of their
pathogenic mechanism; however, most of the recent studies,
especially those that have applied deep learning techniques, did
not provide such a large-scale web service.

Meanwhile, the accelerated development of deep learning
methods has introduced a novel way to explore and interpret
protein sequences [23] through the analogy between natural lan-
guage and biological language. Statistical language models [24]
can estimate the distribution of each amino acid over the protein
sequence by learning from the contextual information, which is
consistent with the intuition of amino acid interaction. Trans-
former [25], an innovative model architecture based on the atten-
tion mechanism, has established a state-of-the-art approach in
language modeling. Bidirectional Encoder Representations from
Transformers (BERT) [26] has provided a standard pipeline in nat-
ural language processing containing unsupervised pre-training
and fine-tuning on downstream tasks. In addition to the success
in machine translation [27] and question answering systems
[28], pre-trained language models have achieved remarkable suc-
cess to explore and model the biological sequence data [29–34],
especially in protein structure prediction.

In this study, we formulated the prediction of type IV secreted
effectors (T4SEs) as a particular downstream task based on the
pre-trained language model of protein sequences and accord-
ingly developed T4SEfinder, a novel genome-scale tool for iden-
tifying T4SEs. It aims to take the advantage of long-time pre-
training to capture the biological representation. In particu-
lar, its support of high-throughput computational classification
might allow us to generate new insights about the taxonomy
distribution of T4SEs and their functions.

Materials and methods

Data integration of experimentally verified T4SEs

We have recently updated the type IV secretion system database
SecReT4 v2.0 [35] (Supplementary Table S1) and then used the
experimentally verified T4SEs as the positive samples in the
training dataset. We have also integrated the positive training
samples used in three recent studies on T4SE prediction [12, 15,
16]. It is noteworthy that most of the effector proteins in the
SecReT4 database could be found in the common training set;
however, 121 newly added T4SEs are not similar to the T4SEs
in the previous dataset (BLASTp identities <60%). Therefore, we
obtained the final 518 T4SEs in our training dataset after using
CD-HIT [36] to remove the homologous sequences (BLASTp iden-
tities ≥60%). The taxonomy composition of the 518 T4SEs in the
training dataset can be found in Supplementary Table S2. For the
negative samples in our training dataset, the entire set of non-
effectors in two studies [9, 37] were gathered together, resulting
in 1584 non-effector proteins following the same procedures to
eliminate the sequence redundancy. The complete flowchart to
construct the dataset is shown in Supplementary Figure S1.

For benchmark testing, the independent test dataset in
this study consists of 20 T4SEs and 150 negative non-effectors
after removal of similar sequences against the training dataset
according to the sequence identity threshold (60%). The positive
T4SEs were obtained from the UniProt [38] database and
S4TE [39], while the negative samples were derived from
Vibrio parahaemolyticus serotype O3: K6 strain RIMD 2210633
[40], similar to Bastion4 [15], DeepT4 [12] and CNNT4SE [16].
The performance of the developed T4SEfinder method was
benchmarked against several existing tools on the same test
dataset, such as Bastion4 [15] and CNN-T4SE [16].

The deep learning architecture of T4SEfinder

T4SEfinder implements an end-to-end prediction process start-
ing from protein sequences in the FASTA format to the predicted
probabilities of T4SEs. Figure 1 illustrates the major functional
modules inside the deep learning-based prediction model. As
can be seen, the feature extraction module employs a protein-
encoding method based on a pre-trained BERT model from Tasks
Assessing Protein Embeddings (TAPE) [29], termed TAPEBert in
this study. Pfam [41] was selected as the pre-training corpus for
TAPE, and the objective of self-supervision training is to predict
the masked amino acid residues more accurately. An intuitive
option for further classification is to use a multi-layer perceptron
(MLP) [42] that outputs prediction results of the target sequences.
The parameters of the MLP model obtained from 5-fold cross-
validation jointly determine the outcome of T4SEfinder. We
also attempted to select support vector machine (SVM) as the
downstream classifier following the encoder so that we have two
pre-trained-based models, TAPEBert_MLP and TAPEBert_SVM.

The composition of the position-specific scoring matrix
(PSSM) and convolutional neural network (CNN) turns out to be
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Figure 1. The model architecture of T4SEfinder (TAPEBert_MLP) to predict T4SEs. The TAPEBert_MLP model in T4SEfinder combines the TAPEBert pre-trained protein

language model and a multi-layer perceptron (MLP) as the major architecture. The input of the model is protein sequences of arbitrary length that are composed of 20

common amino acids. The pre-trained BERT encoder is used to extract biological features, while MLP generates the final classification result.

a sensible choice for T4SE prediction [16]. Accordingly, we also
constructed the PSSM_CNN model. The C-terminus of T4SEs has
shown significant preference in amino acids (Supplementary
Figure S2), thus potentially affecting their biological functions. A
Bi-directional Long Short Term Memory Network (BiLSTM) [43]
is adopted to incorporate the global and local representation of
protein sequence from the pre-trained language model and the
PSSM profile of the last 30 amino acid residues at the C-terminus.
The model is referred to as HybridBiLSTM due to the fusion of
distinct features. The prediction frameworks of PSSM_CNN and
HybridBiLSTM are displayed in Supplementary Figures S3 and
S4, respectively.

Sequence encoding strategies in this study

We can decompose the pipeline of T4SE prediction into the
feature extraction module and the classification module. The
prediction for T4SEs can be symbolized in the following formula:

P (T4SE | x) = g
(
fenc (x)

)
(1)

where x represents the input protein sequence, fenc, g stand for
the models used in the sequence encoding and classification,
respectively.

At the stage of feature extraction, the PSSM profiles gener-
ated by PSI-BLAST and the pre-trained protein language model
lead to two distinct encoding strategies for protein sequence,
which are briefly introduced below.

Position-specific scoring matrix

In this study, we perform PSI-BLAST search against the
UniprotKB/Swiss-Prot database with the default parameters
(i.e., e-value = 10 and num_iterations = 3) to find the distant
evolutionary relationships of the protein sequences. We assume
that PSSM(x) is a L × 20 matrix characterizing the output of PSI-
BLAST. fPSSM

enc transforms the original matrix into a 20 × 20 matrix
and can be expressed as follows:

fPSSM
enc = ∑L

i=1PSSMi(x) × I (xi == a) for each a ∈ A (2)

where L is the length of a protein sequence; I(· ) is the indica-
tor function; A represents the set of 20 common amino acid

residues; i denotes the row number of the PSSM profile and the
position in the protein sequence.

Protein pre-trained language model

We apply a pre-trained language model for protein sequence,
namely TAPE [29], as a feature extraction strategy. This protein
language model encodes the protein sequences and outputs a
768-dimensional embedding vector:

fLM
enc = TAPEBertEncoder (x) (3)

where the TAPEBert encoder comprises input embedding, posi-
tional encoding and stacked transformers with the multi-head
attention, layer norm layers and residual connections [25].

In addition, the loss function of this masked language model
is optimized at the pre-training stage of protein language mod-
eling.

LMLM = −∑
x̂∈m(x) log p

(
x̂|x\m(x)

)
(4)

where m(x) and x\m(x) denote the masked amino acid residues
from the entire protein sequence and the rest sequence, respec-
tively.

Model training

We introduce the architectures of four mentioned models (i.e.,
TAPEBert_MLP, TAPEBert_SVM, PSSM_CNN and HybridBiLSTM),
and discuss the training process in this section.

PTAPEBert_MLP (T4SE|x) = softmax
(
MLP

(
f LM
enc (x)

))
,

MLP (· ) = fc2
(
Dropout

(
ReLU

(
fc1 (· )))) . (5)

where softmax and ReLU denote the activation functions,
Dropout represents the dropout layer to avoid overfitting, fc1

and fc2 are two distinct fully connected layers.

PTAPEBert_SVM (T4SE|x) = SVM
(
f LM
enc (x)

)
,

SVM (· ) = sigmoid
(
wTφ (· ) + b

)
. (6)
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where sigmoid denotes the sigmoid function for binary classifi-
cation, w and b are weights and bias, respectively, φ(· ) represents
the Gaussian kernel function.

PPSSM_CNN (T4SE|x) = CNN
(
fPSSM
enc (x)

)
,

CNN (· ) = softmax
(
MLP

(
ConvBlock2

(
ConvBlock1 (· )))) ,

ConvBlock (· ) = MaxPool (ReLU (BN (Conv (· )))) . (7)

where MaxPool, BN, Conv denote the max pooling layer, batch
normalization [44] layer and convolution layer in the convolu-
tional neural network, respectively.

PHybridBiLSTM (T4SE|x) = fcls
(
Attention (Q, K, V)

)
,

Attention (Q, K, V) = softmax
(

QKT√
dk

)
V,

K = V = BiLSTM
(
f ∗
enc (xC30) , [h0, h0]

)
,

Q = Dropout(K),

f ∗
enc (· ) = Conv

(
Normalize (PSSM (· )))

h0 = Dropout
(
fc

(
fLM
enc(x)

))
. (8)

where fcls, f ∗
enc, fLM

enc represent the classifier, the encoding function
for the last 30 amino acid residues at C-terminus, and the pre-
trained language model, respectively. dk equals the dimension of
the hidden state, while [h0, h0] denotes the concatenation of the
initial hidden state.

All of our models were implemented with the PyTorch deep
learning framework, and the cross-entropy loss function was
adopted to train the classifiers. The Adam optimizer with a
cosine annealing schedule helped to improve the prediction per-
formance. Dropout, weight decay and an early stopping strategy
for monitoring the validation F1-score with the patience of 15
epochs were employed to prevent overfitting. The hyperparam-
eters of deep learning models used in this study are listed in
Supplementary Table S3.

Performance assessment

Six common measures for classification are used to evaluate the
performance of T4SEfinder and other prediction tools for T4SEs.
These include accuracy (ACC), sensitivity (SN), specificity (SP),
precision (PR), F1-score and Matthew’s correlation coefficient
(MCC) and are formulated below:

ACC = TP+TN
TP+FP+TN+FN ,

SN = TP
TP+FN ,

SP = TN
TN+FP ,

PR = TP
TP+FP ,

F1 − score = 2
1/SN+1/PR ,

MCC = (TP×TN)−(FN×FP)√
(TP+FN)×(TP+FP)×(TN+FP)×(TN+FN)

. (9)

where TP, TN, FP and FN denote the numbers of true pos-
itives, true negatives, false positives and false negatives,
respectively.

The receiver-operating characteristic (ROC) curve and the
precision-recall curve are also effective evaluation methods. ROC
curve visualizes the changes in the true-positive rate and false-
positive rate in response to the varying discrimination threshold,
while the precision-recall curve depicts the tradeoff between the
precision and recall for different thresholds. The areas under the
curves are termed AUC and AUPRC (equivalent to average preci-
sion), respectively. For imbalanced classes, the precision-recall
curve is a sensible and more suitable choice for class-imbalance
data than the ROC curve.

Results
Application of pre-trained model for protein sequence
embedding

Features related to the position-specific scoring matrix (PSSM)
are mentioned as typical choices for protein sequence embed-
ding. In this regard, the protein language model has brought new
insight into biological sequence classification. We visualized the
predictive capabilities of both PSSM and TAPEBert embeddings
to distinguish T4SEs from non-effector proteins. We transformed
the original PSSM profile by summing up the rows of the same
amino acid, and normalizing the data with the sequence length,
thereby generating 400-dimension embedding vectors. We also
took the average of the last hidden layer in the pre-trained
TAPEBert encoder as the sequence embedding. Figure 2 shows a
two-dimensional projection of the embedding space using t-SNE
[45]. We can see that most of the effector proteins were clustered
in a group with either the PSSM or TAPEBert embedding. The
clustering result indicates that the application of the pre-trained
model in sequence embedding may achieve a comparable result
as the state-of-the-art methods based on PSSM profiles.

Performance evaluation on repeated 5-fold
cross-validation

We further employed four different machine learning and deep
learning models for the identification of T4SEs. TAPEBert_MLP
and PSSM_CNN model were designed to compare the perfor-
mance of models trained using two alternatives of protein
sequence embedding. Prediction results with different classi-
fiers following TAPEBert embedding were measured as well. We
also inspected the performance of combining the features from
the pre-trained model and the PSSM profiles in HybridBiLSTM.
For each of the predictors, a procedure of repeated 5-fold cross-
validation (10 times) was employed to assess their generalization
performances on the validation datasets. The learning curves
for TAPEBert_MLP in Supplementary Figure S5 monitored the
training loss, validation loss and F1-score during the training
progress. The performance evaluation results are documented in
Table 1, and the corresponding ROC curves and precision-recall
curves are illustrated in Figure 3.

After a comprehensive analysis of the observed performance
of different classifiers on repeated 5-fold cross-validation, sev-
eral important observations could be made to evaluate the pre-
dictors. Compared to the CNN model based on the PSSM features,
TAPEBert_MLP achieved a better accuracy (90.4 versus 89.9%) and
comparable F1-score (0.797 versus 0.794). In addition, another
advantage of pre-trained-based models is the reduction in false
discovery rate (the precision was about 3% higher). When we
assessed the capabilities of the classification head after the
TAPEBert embedding, evident improvement (about 1% of accu-
racy and 0.03 of F1-score) could be achieved through use of the
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Figure 2. The two-dimensional projection of the embedding vectors generated by TAPEBert encoder and PSSM profiles using t-SNE. The green and blue points displayed

in the figure represent the T4SEs encoded by TAPEBert and PSSM profiles, respectively. The grey points denote the non-effectors in our dataset. The majority of the

T4SEs are observed to cluster in a group by both encoding strategies.

Table 1. Performance of various classifiers in this study evaluated by the ten-time repeated 5-fold cross-validation. ACC: Accuracy; SN:
sensitivity; SP: specificity; PR: precision; F1: F1-score; MCC: Matthews correlation coefficient

Method ACC SN SP PR F1 MCC

TAPEBert_MLP 90.4 ± 1.4% 76.8 ± 4.1% 94.8 ± 1.7% 83.2 ± 4.3% 0.797 ± 0.028 0.736 ± 0.037
TAPEBert_SVM 89.3 ± 1.7% 71.2 ± 4.5% 95.2 ± 1.3% 83.0 ± 4.2% 0.766 ± 0.039 0.701 ± 0.049
PSSM_CNN 89.9 ± 1.8% 79.2 ± 4.3% 93.4 ± 2.5% 80.0 ± 5.6% 0.794 ± 0.033 0.729 ± 0.045
HybridBiLSTM 91.3 ± 1.0% 80.1 ± 4.4% 95.0 ± 1.7% 84.3 ± 3.9% 0.820 ± 0.022 0.764 ± 0.028

Figure 3. ROC curves and precision-recall curves of the four different models used by T4SEfinder (TAPEBert_MLP, TAPEBert_SVM, PSSM_CNN and HybridBiLSTM) in the

ten-time repeated 5-fold cross-validation. In the left panel, the black dashed line denotes the ROC curve with the predicted labels selected randomly. The means and

the standard deviations of AUC are listed in the legend. In the right panel, the gray lines represent the contour lines of the F1-score, where the points achieving the

best F1-scores are indicated.
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Table 2. Performance comparison of the models in T4SEfinder and other existing tools on the independent test dataset. ACC: Accuracy; SN:
sensitivity; SP: specificity; PR: precision; F1: F1-score; MCC: Matthews’ correlation coefficient

Method ACC SN SP PR F1 MCC

T4SEpre_psAac 91.8% 65.0% 95.3% 65.0% 0.650 0.603
T4SEpre_bpbAac 90.0% 70.0% 92.7% 56.0% 0.622 0.570
DeepT4 86.5% 75.0% 88.0% 45.5% 0.566 0.513
BastionX 92.9% 100.0% 92.0% 62.5% 0.769 0.758

CNNT4SE_Vote 98.2% 85.0% 100.0% 100.0% 0.919 0.913
TAPEBert_MLP 96.5% 90.0% 97.3% 81.8% 0.857 0.838
TAPEBert_SVM 95.9% 80.0% 98.0% 84.2% 0.821 0.798
PSSM_CNN 91.8% 90.0% 92.0% 60.0% 0.720 0.693
HybridBiLSTM 95.3% 90.0% 96.0% 75.0% 0.818 0.796

MLP classifier instead of the SVM classifier. By incorporating the
TAPEBert embedding and local PSSM features, the HybridBiL-
STM model achieved the highest accuracy (91.3%) and F1-score
(0.820).

In addition, the selection of protein sequence identity cut-
off can change the size of the training dataset, thereby hav-
ing an influence on the result of cross-validation. To examine
the impact of such influence on the model performance, we
removed the sequence redundancy in the positive and nega-
tive samples according to varying BLASTp identities (25, 30, 40,
50 and 60%), and train the TAPEBert_MLP models through the
same repeated 5-fold cross validation process on the resulting
datasets. The validation accuracy, F1-score and MCC under dif-
ferent sequence identity thresholds are shown as boxplots in
Supplementary Figure S6.

Performance comparison on the independent test set

Several bioinformatics tools are currently available for T4SE
prediction. We assessed the performance and generalization
ability of our proposed method and the existing classifiers on
the independent test dataset. Table 2 presents the performance
comparison of our models and another five published predictors.

As can be seen from Table 2, TAPEBert_MLP attained an
accuracy of 90.0%, F1-score of 0.957 and MCC of 0.838, respec-
tively. The TAPEBert_MLP model also achieved a better trade-off
between the sensitivity and precision based on the independent
dataset. The comprehensive superiority of TAPEBert_MLP
reflects the state-of-the-art in prediction for T4SEs as a single
model. The ROC curves and precision-recall curves in Figure 4
provide an alternative to examine the robustness of our models
and other existing tools for T4SE identification.

Whole-genome detection for T4SEs in pathogenic
bacteria

Previous experimental studies have characterized the Dot/Icm
secretion systems that are associated with effector translocation
in L. pneumophila (Supplementary Figure S7) and C. burnetii [46,
47]. These two species of pathogenic bacteria have become the
major source of the T4SEs archived by SecReT4 v2.0 (Supplemen-
tary Figure S8). In this study, we have scanned all the annotated
proteins in 5 L. pneumophila and 5 C. burnetii chromosomes using
the prediction models of T4SEfinder. The label of each protein
sequence is confirmed according to T4SEs collected in SecReT4
[35] database. We compared the prediction performance of the
models in Figure 5 and Supplementary Table S4.

Table 3. F1-score and elapsed time of different methods in this study
for predicting T4SEs encoded by all the annotated genes of Coxiella
burnetii RSA 493a

Method Elapsed timeb F1-score

TAPEBert_MLP 0:01′04” 0.455
TAPEBert_SVM 0:01′06” 0.468
PSSM_CNN 1:18′33” 0.494
HybridBiLSTM 1:18′43” 0.516
BastionX 5:00′09” 0.412

aThe C. burnetii RSA 493 genome contained 1657 annotated protein-coding genes.
bAll experiments were performed on a Linux server with two Intel Xeon Gold
5117 CPUs of 14 cores and one GeForce RTX 2080 SUPER (8G) GPU except BastionX,
which was used its web server available at https://bastionx.erc.monash.edu/.

HybridBiLSTM achieved the highest AUC and F1-score thanks
to the feature fusion. Meanwhile, TAPEBert_MLP attained equiv-
alent accuracy in overall prediction results to PSSM_CNN and
approached the leading performance in L. pneumophila, which
corroborated the effectiveness of the pre-trained model TAPE-
Bert. To evaluate the computational efficiency, we recorded the
elapsed time for predicting 1657 annotated proteins in C. bur-
netii RSA 493 in Table 3. As can be seen, TAPEBert embedding
helped reduce the prediction time by ∼100 times in contrast with
the PSSM-based methods. All prediction results for the whole-
genome detection of putative T4SEs are available at https://too
l2-mml.sjtu.edu.cn/T4SEfinder_TAPE/download.html.

The genome-scale detection of pathogenic bacteria might
depict a novel understanding of the relationship between effec-
tor proteins and genomic properties. The VirB secretion system
in Brucella also plays a crucial role in protecting the pathogen
[48], but the number of experimentally verified T4SEs is limited.
To screen the potential effector proteins out, we visualized the
genome maps [49] of B. melitensis ATCC 23457 chromosome II
(NCBI accession number: NC_012442) with the probability distri-
bution for each annotated gene to encode a T4SE, and labeled the
genomic location of putative T4SE-encoding genes in Figure 6.

Implementation of an online tool to facilitate T4SE
identification

As an implementation of the developed T4SEfinder method,
we have developed an online web server to facilitate the
community-wide efforts for T4SE prediction. Figure 7 illustrates
how to use the online version of T4SEfinder. Specifically, users
can submit one or multiple protein sequences in the FASTA
format and choose one of the available prediction models
among TAPEBert_MLP, PSSM_CNN and HybridBiLTSM. The
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Figure 4. ROC curves and precision-recall curves for the performance evaluation of the models in T4SEfinder and other T4SE prediction tools on the independent test

dataset. TAPEBert_MLP outperformed all of the simple classifiers that used amino acid composition as the feature, and approached t prediction results as BastionX, a

relatively accurate PSSM-based predictor in AUC (0.985 versus 0.995) and AUPRC (0.880 versus 0.921).

Figure 5. Whole-genome annotation results of T4SEs in Legionella pneumophila and Coxiella burnetii. A. The AUC distributions resulting from the T4SE prediction in L.

pneumophila and C. burnetii by TAPEBert_MLP and PSSM_CNN are compared (Supplementary Table S4). Each point represents the AUC of a certain strain predicted by

TAPEBert_MLP and PSSM_CNN with the same training set. The density plots along the X-axis and Y-axis represent the density distribution of the AUC. TAPEBert_MLP

appeared to provide equivalent annotation results as PSSM_CNN. B. The F1-scores obtained by the models in T4SEfinder and the voting strategy are compared. The

error bars indicate the standard error in predicting different strains of the pathogen.

prediction result will be generated in the form of a DataTable.
For the predicted T4SEs, users can subsequently search the
similar effectors or target proteins in the SecReT4 database
(Supplementary Figure S9).

Discussion
In this study, we have developed an efficient web server
T4SEfinder for genome-scale T4SE prediction, an alternative

to the currently available PSSM-based methods. The employed
TAPEBert model derived from the long-time pre-training assists
to capture the biological representation of protein sequences.
The procedure of feature extraction from the TAPEBert model
is accelerated by the graphics processing unit (GPU) to realize
the rapid prediction. To the best of our knowledge, this study
represents the first use case for the pre-trained sequence
embedding in the field of bacterial secretion systems and
effector proteins.
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Figure 6. Visualization of Brucella melitensis ATCC 23457 chromosome II with the detected T4SEs. The locations of the CDS regions encoding T4SEs predicted by

T4SEfinder are visualized by CGView Server. The blue bars indicate the probability distribution to encode T4SEs along the chromosome. The putative T4SE-encoding

genes (with the predicted probability over 0.5) are marked out with red arrows as well as the gene names.

To confirm the effectiveness of the pre-trained BERT model,
four candidate models for predicting T4SEs were compared
through repeated 5-fold cross-validation. We terminated the
training process when the validation F1-score had no improve-
ment for 15 epochs in all experiments to avoid overfitting. In
addition, it might be difficult to eliminate the difference between
sensitivity and specificity due to the different numbers of the
positive samples and the negative samples; however, we tried
to balance the trade-off between them. TAPEBert_MLP model
achieved a slightly higher accuracy, F1-score and MCC than
PSSM_CNN, and was considered as a more robust predictor
by measuring the standard error of each evaluation metric.
Performance improvement could be achieved by HybridLSTM
through integrating the PSSM-based features with the pre-
trained sequence embedding. The results suggested that
leveraging the pre-trained language model of protein sequences
contributed to the more precise classification of T4SEs. In the
phase of the independent test, a more straightforward method
(TAPEBert_MLP) outperformed the best model in cross-validation
(HybridLSTM) because of insufficient training data to support
a more complex model. TAPEBert_MLP also demonstrated
an attractive advantage in computational efficiency for the
whole-genome T4SE detection. Therefore, we have selected
TAPEBert_MLP as the default prediction algorithm for the
T4SEfinder web server.

We have also compared the capability for T4SE prediction
of T4SEfinder and other five existing tools on the indepen-
dent test set. Among the compared tools, T4SEpre_psAac and
T4SEpre_bpbAac [10] used the feature of amino acid compo-
sition; DeepT4 [12] only encoded the protein sequence at N-
terminus and C-terminus by one-hot vectors. Note that these
methods did not use the PSSM-based features, thus offering the
advantage in computing speed; however, they were not proper
genome-scale detection tools for T4SEs due to the poor pre-
dictive performance. Bastion4 [15] provided an ensemble model
that took into consideration all of the sequence encoding, PSSM
profiles and structure description. CNN-T4SE [16] also integrated
various types of features to generate a more comprehensive
prediction. Although the addition of PSSM encoding has helped
to improve the accuracy significantly for Bastion4 and CNN-
T4SE, the running time of PSI-BLAST is a tricky problem for large-
scale prediction. In comparison with the other prediction tools,
T4SEfinder (TAPEBert_MLP) achieves a better balance between
the prediction accuracy and the computing speed so that we
can regard it as the state-of-the-art approach in genome-scale
detection for T4SEs.

In the near future, T4SEfinder will be further developed
and upgraded to maintain the prediction efficiency, and
pursue higher accuracy as well. Ensemble learning-based
tools such as Bastion4 has promoted the model performance
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Figure 7. User interface of the web service of T4SEfinder. A. Users can upload a FASTA formatted protein sequence(s) and select the corresponding model to predict

T4SEs. They can also retrieve the completed task according to the Job ID. B. The web page for prediction results: Show both the predicted probabilities and the similarity

(Ha-value) compared by known T4SEs. Users can download the results in the csv or excel format, and conduct subsequent analysis for the putative T4SEs. C. The

webpage for subsequent analysis: Search the similar effectors and target proteins in the SecReT4 database.

successfully; T4SEfinder will also combine other relevant
biological features and classifiers. On the other hand, updating
the pre-trained model in the feature extraction module to
obtain more effective embedding of biological information
may also prove useful for improving the general performance.
In addition, the attention mechanism in the Transformer-
based protein language model [50] may provide an advanced
method for biological interpretation of deep learning tech-
niques.

Conclusion
We have developed a publicly available web server T4SEfinder
to facilitate community-wide efforts for T4SE prediction. By
using the pre-trained language model of protein sequences,
T4SEfinder has the capability of detecting the T4SEs in all
annotated proteins encoded by a bacterial whole genome in
minutes. Deep-learning tools such as T4SEfinder are anticipated
to support rapidly escalating demands of the discovery of
disease-associated secreted protein factors across diverse
bacterial pathogens.

Key Points
• The T4SE training dataset from the newly updated

SecReT4 database and other previous studies was
integrated to form the benchmark dataset.

• The pre-trained language model of protein sequences
is used for protein sequence embedding.

• The developed TAPEBert_MLP model achieved a better
trade-off between the sensitivity and precision on the
independent test dataset.

• The HybridBiLSTM model that incorporated the TAPE-
Bert embedding and local PSSM features achieved the
highest accuracy and MCC.

• A publicly available web server is publicly available for
the genome-scale identification of T4SEs.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.
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Data availability

Training and independent datasets used in this study are
available from the corresponding authors upon reasonable
request.

Availability

The online version of T4SEfinder is freely accessible at
https://tool2-mml.sjtu.edu.cn/T4SEfinder_TAPE/.
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