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Abstract 

Accurate prediction of major histocompatibility complex (MHC)-peptide binding affinity can 

improve our understanding of cellular immune responses and guide personalized immunotherapies. 

Nevertheless, the existing deep learning-based approaches for predicting MHC-II peptide interactions 

fall short of satisfactory performance and offer restricted model interpretability. In this study, we 

propose a novel deep neural network, termed ConBoTNet, to address the above issues by introducing 

the designed supervised contrastive learning and bottleneck transformer extractors. Specifically, the 

supervised contrastive learning pre-training enhances the model’s representative and generalizable 

capabilities on MHC-II peptides by pulling positive pairs closer and pushing negative pairs further in 

the feature space, while the bottleneck transformer module focuses on MHC-II peptide interactions 

to precisely identify binding cores and anchor positions in an unsupervised manner. Extensive 

experiments on benchmark datasets under 5-fold cross-validation, leave-one-molecule-out validation, 

independent testing, and binding core prediction settings highlighted the superiority of our proposed 

ConBoTNet over current state-of-the-art methods. Data distribution analysis in the latent feature 

space demonstrated that supervised contrastive learning can aggregate MHC-II-peptide samples with 

similar affinity labels and learn common features of similar affinity. Additionally, we interpreted the 

trained neural network by associating the attention weights with peptides and innovatively find both 

well-established and potential peptide motifs. This work not only introduces an innovative tool for 

accurately predicting MHC-II peptide affinity, but also provides new insights into a new paradigm 

for modeling essential biological interactions, advancing data-driven discovery in biomedicine. 

 

Keywords: MHC-II peptide binding; supervised contrastive learning; binding affinity prediction; 

binding core identification; Interpretability analysis  
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1. Introduction 

Major histocompatibility complex (MHC) molecules are a class of cell surface glycoproteins that play 

an essential role in the immune system(Holling, Schooten, & van Den Elsen, 2004; Tsai & Santamaria, 

2013). They can be categorized into two major types: MHC class I (MHC-I) and MHC class II (MHC-

II). Among them, MHC-II molecules can recognize exogenous antigens derived from pathogenic 

microorganisms or self-tissues to form MHC-peptide complexes, and then present them on the surface 

of antigen-presenting cells (APC) to CD4+ T cell receptors (TCR), thereby activating specific T cell 

immune responses and eliminating pathogens or damaged tissues (Sagan, et al., 2023). Accurate 

identification of MHC binding peptides is thus crucial not only for identifying neoepitopes that 

effectively trigger immune response targeting cancer or infected cells but also for providing key 

insights into vaccine design (Blass & Ott, 2021), immunotherapy (Wang, et al., 2020), and research 

on immune-related diseases (Liu, Shao, & Fu, 2021). In this context, computational methods can 

assist in identifying potential peptides for effective immune response, enhancing vaccine safety and 

efficacy, and guiding treatments for immune-related diseases such as autoimmune disorders, allergies, 

and cancer (Alspach, et al., 2019; Meraviglia-Crivelli, et al., 2022; Moore & Nishimura, 2020). 

The MHC-II molecule is composed of the 𝛼  and 𝛽  chain. Each chain possesses a domain, 

specifically alpha-1 and beta-1, which collectively create a peptide-binding groove for the attachment 

of an antigenic peptide (Kisielow, Obermair, & Kopf, 2019). MHC-II molecules in humans are 

encoded by various Human Leukocyte Antigen (HLA) genes like HLA-DR, HLA-DQ and HLA-

DP.(Traherne, 2008) Each MHC-II gene possesses numerous alleles, resulting in substantial genetic 

diversity within the population (Tadros, Eggenschwiler, Racle, & Gfeller, 2023). Unlike MHC-I, the 

open groove of MHC-II allows for hypervariable peptide lengths, usually between 10-30 amino acids, 

with a typical range of 13-17 residues (Chang, Ghosh, Kirschner, & Linderman, 2006). In essence, 

the polypeptides’ ends extend past the binding groove, with only some key amino acid residues (i.e., 

anchor residues) tightly coupled with MHC-II molecules, ensuring the stability of protein-peptide 

interaction (Jones, Fugger, Strominger, & Siebold, 2006). This characteristic allows MHC-II 

molecules to effectively present exogenous antigens to CD4+ T cells, thus regulating immune 

responses(Couture, et al., 2019; Neefjes, Jongsma, Paul, & Bakke, 2011). However, experimental 

characterization of the binding specificity with numerous MHC-II molecules is time-consuming and 
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laborious. In this regard, computational methods can be employed as effective alternatives to quantify 

peptide-MHC-II molecule binding affinity. Recent studies indicate the growing importance of such 

computational methods and tools in the fields of vaccine design and immunotherapy (Fatima, et al., 

2022; Finotello, Rieder, Hackl, & Trajanoski, 2019; Soleymani, Tavassoli, & Housaindokht, 2022). 

MHC-II peptide binding prediction methodologies mainly comprise allele-specific and pan-

specific methods. While allele-specific methods are restricted to predicting binding affinity for MHC-

II molecules found in the training set, pan-specific methods can predict unseen MHC-II molecules 

with known protein sequences (Jensen, et al., 2018). Pan-specific methods have broader applications 

and encompass allele-specific methods. The classic allele-specific method, NetMHCII (Jensen, et al., 

2018), trained separate artificial neural networks (ANNs) for each MHC-II molecule to predict 

peptide-binding affinity. Given the scarcity of experimental data for most MHC-II molecules and the 

limited scope of allele-specific methods, pan-specific approaches emerged for MHC-II peptide 

binding prediction (You, Qu, Mamitsuka, & Zhu, 2022; Zeng & Gifford, 2019). NetMHCIIpan-3.2 

(Jensen, et al., 2018) was the first pan-specific method to predict binding affinity using ANN. It 

combines MHC-II pseudo-sequence information and integrates 40 networks with different numbers 

of hidden neurons. Zeng et al. proposed a multi-model ensemble method PUFFIN (Zeng & Gifford, 

2019) that quantified prediction uncertainty and prioritized peptides with “binding likelihood” to 

improve the accuracy of high-affinity peptide selection. MHCAttnNet (Venkatesh, Grover, 

Srinivasaraghavan, & Rao, 2020) incorporated variable-length peptide sequences and the MHC allele 

via attention mechanism and Bi-LSTM encoder, thus improving MHC-I and II peptide binding 

predictions. Similarly, DeepSeqPanII (Z. Liu, et al., 2021), a recurrent neural network model with 

attention mechanism, also predicted peptide-HLA class II binding. Recently, You et al. (You, et al., 

2022) proposed a binding core-aware interaction model to enhance MHC-II peptide binding affinity 

prediction. Despite impressive advances in prediction performance, current methods have some 

drawbacks: (1) the large diversity of MHC-II molecules and scarcity of binding data often lead to low 

prediction performance with limited training data; (2) while some algorithms aim to enhance model 

interpretability by analyzing attention modules, there is still much room for improvement; (3) most 

methods singularly characterize MHC-II molecules and peptide sequences, which may lead to 

insufficient mining of sequence information; (4) Most algorithms currently ensemble multiple models 
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of similar structure to boost model performance. However, it will save computing resources for 

training and prediction if comparable or superior performance can be achieved with fewer integrations 

or a single model. 

Here, we present ConBoTNet (Contrastive Bottleneck Transformer Network), a new deep-

learning framework that employs powerful supervised contrastive learning with the bottleneck 

transformer extractor to enable accurate prediction of MHC-II peptide binding affinity. In the 

supervised contrastive learning pre-training phase, the continuous values of binding affinity are 

divided into ordered categories, and then the supervised contrastive loss function is applied to 

minimize the normalized embeddings within each class and maximizes the distances between 

different classes. Moreover, the bottleneck transformer modules can detect the binding core and 

precise anchor positions from MHC-II molecules and peptide interaction features due to their 

robustness in feature extraction. Performance evaluations, including 5-fold cross-validation (5-fold 

CV), leave-one-molecule-out (LOMO) validation, and independent testing on benchmark datasets, 

reveal that our model outperforms five current state-of-the-art (SOTA) methods, exhibiting rapid 

training convergence and impressive generalization capacity. 

2. Materials and methods 

2.1. Benchmark datasets 

In this study, three public benchmark datasets (BD2016, BC2015, BD2023) were used as benchmark 

datasets to evaluate and compare the performance with other competing methods. The sources and 

construction process of these three datasets are introduced in this section. 

BD2016: This dataset includes the MHC-II peptide binding affinity data extracted from the IEDB 

database (Vita, et al., 2019) (https://www.iedb.org/) in 2016 by NetMHCIIpan-3.2 (Jensen, et al., 

2018). The binding values (𝐼𝐶!") of the experimental data were normalized to the range of [0,1] by 

1 − log	(𝐼𝐶!"	𝑛𝑀)/log	(50,000) . The BD2016 dataset encompasses 134,281 MHC-II peptide 

affinity data for 36 HLA-DR, 27 HLA-DQ, 9 HLA-DP alleles, and 8 H-2 alleles, respectively. It is 

considered as the gold standard dataset by a number of previous affinity prediction methods, 

providing widely accepted 5-fold CV data partitioning by grouping the peptides with common motifs 

into the same fold (Z. Liu, et al., 2021; You, et al., 2022; Zeng & Gifford, 2019). This dataset is 
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accessible at https://services.healthtech.dtu.dk/services/NetMHCIIpan-3.2/. 

BC2015: This dataset included 51 MHC-II peptide complexes with crystal structures and has been 

used as the benchmark dataset by several MHC-II peptide affinity prediction algorithms, particularly 

for unsupervised binding core evaluations. It is also accessible at 

https://services.healthtech.dtu.dk/services/NetMHCIIpan-3.2/. 

BD2023: an up-to-date independent test set curated from an automatically updated MHC-II binding 

prediction platform (http://tools.iedb.org/auto_bench/mhcii/weekly/) (Andreatta, et al., 2018). 

Specifically, we selected recently added MHC-II peptide binding data generated from 2022-04-01 to 

2023-04-21 and removed the duplicates from the training set BD2016. We then applied the filtering 

criterion to only include MHC-II molecules with demonstrated binding to a minimum of 28 peptides, 

to ensure that the dataset could focus on significant binding interactions. The dataset contained 

samples of two measurement types, i.e., 𝐼𝐶!"  and binary (binding or decoy) labels. Performance 

evaluation metrics used by the experiments are provided in the Supplementary Text S1. 

 
Figure 1. Model architecture of ConBoTNet. a, Schematic diagram of the binding of MHC-II molecules and 
peptides on the surface of the antigen-presenting cell. b, Architecture of ConBoTNet and the training pipeline. c, 
Detailed structure of the multi-head self-attention (MHSA) layer. d, Schematic diagram of the supervised contrastive 
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loss. e, Based on the division of binding affinity values of BD2016, the data processing workflow for constructing 
the pre-training classification dataset. 

2.2. Overview 

The deep-learning framework of ConBoTNet is illustrated in Figure 1, which mainly includes the 

following modules: (1) sequence encoding for peptides and MHC-II molecules; (2) backbone encoder 

network for feature extraction; (3) projection network used for contrastive learning; (4) binding core 

and affinity predictor. The core contributions of ConBoTNet are as follows: (i) Combining supervised 

contrastive learning with a deep transformer-based network, we could effectively learn the latent 

representations of the MHC-II peptide binding complex. (ii) Then, we can smoothly adapt the pre-

trained model to various downstream tasks, including binding affinity prediction and binding core 

identification. 

2.3. Sequence encoding 

The input to ConBoTNet includes the peptide and MHC-II molecule sequence pairs, whose binding 

schematic is illustrated in Figure 1a. In particular, the MHC-II molecule sequence is represented by 

a pseudo-sequence comprising 34 amino acids in contact with the peptide-binding core (distance 

within 4Å) (Karosiene, et al., 2013). The first 15 amino acids of these are from the 𝛼-chain while the 

rest are from the 𝛽-chain, following the strategy used in most previous studies (Holland, Cole, & 

Godkin, 2013; Jensen, et al., 2018; You, et al., 2022; Zeng & Gifford, 2019). 

We define 𝑃 as the input peptide sequence with a length of 𝐿 and 𝑄 as the MHC-II pseudo-

sequence with a length of 34, respectively. To capture the hidden semantic information and ensure 

the complete representation of the input information, we encode both the peptide sequence and the 

MHC-II pseudo-sequence using the embedding layer and one-hot encoding. 

For the embedding layer, let 𝑑 be the dimension of amino acid embeddings, 𝑿# ∈ ℝ$×& , the 

output of the embedding layer for peptide sequence 𝑃, and 𝒀# ∈ ℝ'(×&, the output of the embedding 

layer for the MHC-II pseudo-sequence 𝑄, are given as follows: 

𝑿# = (𝒙#) , 𝒙#*, … , 𝒙#$)+ , 𝒀# = (𝒚#) , 𝒚#*, … , 𝒚#'()+ (1) 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2024. ; https://doi.org/10.1101/2023.12.21.572942doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.21.572942
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

where 𝒙#, ∈ ℝ&and 𝒚#
- ∈ ℝ&are the feature vectors of the 𝑖th amino acid of 𝑃 and 𝑗th amino acid of 

𝑄, respectively. 

In terms of one-hot encoding, 𝑑.=20 is the dimension of one-hot encoding, representing 20 

common amino acids. 𝑿/ ∈ ℝ$×&!, the one-hot encoding for peptide sequence 𝑃, and 𝒀/ ∈ ℝ'(×&!, 

the one-hot encoding for MHC-II pseudo-sequence 𝑄, are given as follows: 

𝑿/ = (𝒙/) , 𝒙/* , … , 𝒙/$)+ , 𝒀/ = (𝒚/) , 𝒚/* , … , 𝒚/'()+ (2) 

where 𝒙/, ∈ ℝ&!and 𝒚/
- ∈ ℝ&!are the one-hot feature vectors of the 𝑖th amino acid of 𝑃 and 𝑗th amino 

acid of 𝑄, respectively. A value of 1 was assigned to the corresponding amino acid position in the 

input sequences and 0 elsewhere. 

2.4. Backbone encoder network 

Next, we briefly introduce the architecture of ConBoTNet in combination with Figure 1b. Firstly, we 

used two feature encoding methods to characterize the peptide sequence and the MHC-II molecular 

pseudo-sequence, respectively. Subsequently, we built the interaction features through the interaction 

module proposed by DeepMHCII (You, et al., 2022). It is noteworthy that we added 64 1 × 3 

convolution filters after one-hot encoded features for peptide and MHC-II, respectively. We then 

combined the interaction features from different encoding methods as the final peptide MHC-II 

molecule interaction features. Next, these were sequentially passed through two bottleneck 

transformers, several one-dimensional ResNet blocks, and an avg-pooling layer.  

We refer to the above pipeline as the backbone encoder network, denoted as 𝐸𝑛𝑐(⋅), which is 

expressed by the following formula: 

𝒓𝒆𝒑 = 𝐸𝑛𝑐(𝒙, 𝒚) ∈ ℝ0" (3) 

We define the number of samples in a batch as 𝑁 . 𝒙, 𝒚 represent pairs of peptide and MHC-II 

molecules. The encoder network map 𝒙, 𝒚 to a representation vector 𝒓𝒆𝒑, which is normalized to the 

unit hypersphere in ℝ0" (𝐷1 = 256, according to the complexity of features). 

The details of Bottleneck transformers. The current state-of-the-art methods for predicting MHC-II 

peptide binding utilize shallow or deep convolutional networks, such as PUFFIN (Zeng & Gifford, 
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2019), DeepMHCII (You, et al., 2022). However, we propose that incorporating the transformer 

module can further enhance the predictions. Transformers capture long-term dependencies in MHC-

II peptide binding features and enhance context awareness through multi-head self-attention, enabling 

them to learn the universal pattern and contextual information of MHC-II peptide binding. Inspired 

by the bottleneck transformer (BoTNet)(Srinivas, et al., 2021) architecture and its outstanding 

performance in computer vision tasks, we integrated it with the domain knowledge of affinity 

prediction, and improved its Multi-head Self-Attention (MHSA) layer to capture the contextual and 

global information related to MHC-II peptide interaction. 

We illustrated an MHSA layer in Figure 1c. The multi-head self-attention layer can be 

summarized by the following equation: 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑋) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑), … , ℎ𝑒𝑎𝑑2) 
(4) 

                         ℎ𝑒𝑎𝑑, = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛Y𝑋𝑊,
3 , 𝑋𝑊,

4 , 𝑋𝑊,
5 , 𝒓,[ 

where 𝑊,
3 ∈ ℝ&#$%&'×&( ,𝑊,

4 ∈ ℝ&#$%&'×&( ,𝑊,
5 ∈ ℝ&#$%&'×&(  represents the parameter matrices,	

𝒓, ∈ ℝ&(×&) 	is	 the	 relative	 position	 encodings	 of	 interaction	 features,	 𝑑6 	is	 the	 length	 of	

features	and	𝑖 denotes the 𝑖-th attention head. 𝑑7/&#8 is the input feature dimension of the MHSA 

layer. In this work, we use 𝑑7/&#8 = 128, ℎ = 4 , and 𝑑9 = 𝑑7/&#8/ℎ = 32. 

As shown in the MHSA layer in Figure 1c, the input size is 𝑊 × 𝑑, which respectively represent 

the length and encoding dimension of the MHC-II peptide interaction feature map. 𝒓𝒊  denote a 

learnable relative position encodings matrix of the ℎ𝑒𝑎𝑑,, 𝒓 is the set of all 𝒓,. First, the input feature 

𝑋 is multiplied by the weight matrices 𝑊3 ,𝑊4  and 𝑊5  respectively to obtain matrices 𝒒, 𝒌	and 𝒗. 

Then, matrix 𝒓 is multiplied by 𝒒 to get the content-position which forms part of the attention. 

Following traditional self-attention mechanism, the product of 𝒒  and 𝒌  is calculated as content-

content. By adding corresponding elements from the content-position and content-content, and then 

applying the softmax function, we calculate the final attention weights. Finally, these attention 

weights are multiplied by the matrix 𝒗 to obtain the output feature map of the self-attention layer with 

the position information. 

2.5. Supervised contrastive learning 
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Data preprocessing for supervised contrastive pre-training. In the pre-training phase of supervised 

contrastive learning, we split the training dataset, BD2016, into ten distinct categories at intervals of 

0.1 based on the transformed affinity score. Figure 1e provides a detailed illustration of this 

categorization — for instance, category 0 includes affinity values within the range of [0.0, 0.1]. We 

examined the category numbers such as 5, 8, 10, and 14. As a result, 5-fold CV test confirmed 10 as 

the best choice, as can be seen from Table S1. Particularly, having a high number of categories led to 

fewer samples per group, which hindered the learning of discriminative features. Conversely, when 

there were too few categories available, it would prevent the full realization of the substantial potential 

in supervised contrastive learning. Therefore, we finally chose to retain the categorization number of 

ten. 

Supervised contrastive learning pre-training. Next, we briefly introduce the main components of the 

supervised contrastive learning framework and the expression equation of the supervised contrastive 

loss function. 

We mainly divide the supervised contrastive learning framework into two parts: Encoder 

Network and Projection Network. The specific architecture of the encoder network is described in 

detail in backbone encoder network section. We represent the output features of the encoder network 

as 𝒓𝒆𝒑. Following the encoding network, we employ a multi-layer projection network to map 𝒓𝒆𝒑 to 

vector 𝒛. The projection network is represented by the following formula: 

𝒛 = 𝑃𝑟𝑜𝑗(𝒓𝒆𝒑) ∈ ℝ0* (5) 

where 𝑃𝑟𝑜𝑗(⋅) consists of two fully-connected layers and a ReLU activation function subsequently 

normalizing the final output to the unit hypersphere in ℝ0* (where 𝐷; = 16 in this study). In the end, 

we utilize the inner product between 𝒛 as a metric for their distance in the projected space, and 

calibrate the model parameters via the contrastive loss, which is expressed as follows: 

ℒ =tℒ,
,∈=

=t
−1
|𝑃(𝑖)|

,∈=

t log
exp w𝑧, ⋅

𝑧>
𝜏 z

∑ exp w𝑧, ⋅
𝑧?
𝜏 z?∈@(,)>∈;(,)

 (6) 

In a given batch, let {(𝒙9 , 𝒚9), 𝑙𝑎𝑏𝑒𝑙9}9C),*,…,F  be peptide, MHC-II, label triplets and 𝒛9 =

𝑃𝑟𝑜𝑗(𝐸𝑛𝑐(𝒙9 , 𝒚9)) ∈ ℝ0*. Let 𝑖 ∈ 𝐼 ≡ {1,2, … , 𝑁} be the index of a sample, typically referred to as 

the ‘anchor’.	 𝐴(𝑖) ≡ 𝐼\{𝑖}  represents the set of indices not included in set 𝐼 , 𝑃(𝑖) ≡ {𝑝 ∈
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𝐴(𝑖): 𝑙𝑎𝑏𝑒𝑙> = 𝑙𝑎𝑏𝑒𝑙,} is the set of indices for all positives in the batch excluding 𝑖, and |𝑃(𝑖)| is its 

cardinality. The ⋅  stands for the inner (dot) product, while 𝜏 ∈ ℝG  is a scalar representing a 

temperature parameter. A diagram of the supervised contrastive loss is shown in Figure 1d, where 

the distance of MHC-peptide pairs within the anchor category is pulled closer. 

Upon completing the supervised contrastive learning phase, we discard the projection network 

𝑃𝑟𝑜𝑗(⋅). In the subsequent fine-tuning stage, we employ the Mean Squared Error (MSE) loss function 

to perform further model training based on the established encoder	𝐸𝑛𝑐(⋅) parameters. 

 
Figure 2. Performance evaluation of ConBoTNet and competing methods on different benchmarks. a, Boxplots of 
the performance of ConBoTNet and competing methods under 5-fold CV. b, Two scatter plots of point-to-point 
comparisons between ConBoTNet and the current best competing method on 5-fold CV under the AUC and PCC 
metrics, respectively. c, Boxplots of ConBoTNet and competing methods on LOMO. d, Two scatter plots of point-
to-point comparisons between ConBoTNet and the current best competing method on LOMO under the AUC and 
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PCC metrics, respectively. e, Boxplots of the performance of ConBoTNet method and competing methods on 
BD2023 data set. f, Two scatter plots of point-to-point comparisons between ConBoTNet and the current best 
competing method on the BD2023 subset binary and 𝐼𝐶!" under the AUC index, respectively. Asterisks indicate 
statistical significance levels against other methods (*, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001). 

2.6. Two stages training process 

In the pre-training stage, we mapped the interaction feature 𝒓𝒆𝒑, with a dimension of 256, to a 

representation vector 𝒛, with a dimension of 16, via the projection network	𝑃𝑟𝑜𝑗(⋅). We optimized 

the model parameters with the supervised contrastive loss and larger batch sizes (set to 512) for model 

stability and speed. In the fine-tuning stage, we replaced the projection network with a linear layer 

and sigmoid function, then optimized the pre-trained model with MSE loss. Additionally, we 

determined the binding cores by identifying the highest-scoring positions from the output vector of 

the bottleneck transformer during inference. A detailed description of the model implementation and 

hyperparameter settings is provided in Supplementary Text S2. 

Table 1. Performance comparison of ConBoTNet and competing methods 

Method 

5-CV  LOMO  BD2023 (binary)  BD2023 (𝐼𝐶!")  Binding core 

AUC PCC  AUC PCC  AUC  AUC PCC  
No. of correct/No.  

of total 

NetMHCIIpan-3.2 0.847 0.679  0.775 0.544  0.571  0.802 0.616  45/51 

NetMHCIIpan-4.0 -a -  - -  0.577  0.814 0.653  - 

PUFFIN 0.846 0.676  0.768 0.525  -  - -  - 

DeepSeqPanII 0.741 0.488  0.739 0.485  0.569  0.704 0.416  10/51 

DeepMHCII 0.856 0.690  0.783 0.558  0.620  0.831 0.674  44/51 

ConBoTNet 0.865 0.709  0.789 0.568  0.637  0.845 0.682  45/51 
a ‘-’ indicates that the corresponding value does not exist. 

3. Results 

3.1. Comparison of ConBoTNet and competing methods under 5-fold cross-validation 

Table 1 presents the average area under the ROC curve (AUC) and Pearson correlation coefficient 

(PCC) of ConBoTNet and competing methods over all MHC-II molecules via 5-fold CV on BD2016 

data set. Since NetMHCIIpan-4.0 has already incorporated elution ligand mass spectrometry(Purcell, 
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Ramarathinam, & Ternette, 2019) data, it is not suitable to compare NetMHCIIpan-4.0 through 5-

fold CV and LOMO. Our proposed model, ConBoTNet, outperforms existing models in terms of both 

average AUC and PCC. Specifically, ConBoTNet outperformed the existing SOTA method, 

DeepMHCII, with an AUC of 0.865 (95% confidence interval [CI]: 0.857-0.871) and a PCC of 0.709 

(95% CI: 0.698-0.719), compared to the AUC of 0.856 achieved by DeepMHCII (95% CI: 0.847-

0.864) and PCC of 0.690 (95% CI: 0.679-0.700), respectively. Moreover, the boxplots in Figure 2a 

clearly illustrate the overall performance of each method across 61 MHC-II molecules, where 

ConBoTNet outperforms all other methods. Figure 2b provides a comparison between ConBoTNet 

and the current state-of-the-art method, DeepMHCII, in terms of AUC and PCC values for each 

MHC-II molecule. Each dot in Figure 2b corresponds to one MHC-II molecule. Specifically, the 

scatter plots reveal that ConBoTNet exhibited varying degrees of performance improvement over 57 

out of 61 MHC-II molecules (representing ~93.4% of molecules) compared to DeepMHCII in terms 

of AUC and PCC. 

3.2. Comparison of ConBoTNet and competing methods under LOMO 

Table 1 also shows that ConBoTNet transcended other competing methods in terms of average AUC 

and PCC under LOMO on BD2016 data set. The experimental results are consistent with 5-fold CV. 

Specifically, ConBoTNet achieved the highest AUC score of 0.789 (95% CI: 0.778-0.796) and PCC 

score of 0.568 (95% CI: 0.557-0.578), respectively. Furthermore, the boxplots in Figure 2c 

demonstrate that ConBoTNet outperforms competing methods in most cases. ConBoTNet shows 

statistically significant improvement over the suboptimal method, DeepMHCII (P-value = 0.0413). 

Additionally, Figure 2d illustrates that ConBoTNet outperforms the suboptimal method for 

approximately 72.1% and 73.8% of the MHC-II molecules based on the AUC and PCC metrics, 

respectively. 

3.3. Comparison of ConBoTNet and competing methods on independent testing set 

The BD2023 dataset was collected from the latest IEDB release by the MHC-II automated benchmark 

platform. Any overlapping items with BD2016 within BD2023 were subsequently removed. We then 

divided this dataset into two subsets: BD2023 (binary) and BD2023 (𝐼𝐶!"), based on the types of 

measurement data. Table 1 shows the evaluation results of each model on BD2023. For 
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NetMHCIIpan-3.2 and NetMHCIIpan-4.0, these results were obtained from the benchmark testing 

platform. Meanwhile, the results for DeepSeqPanII, DeepMHCII, and ConBoTNet were obtained by 

training these models on BD2016 and then tested on this independent dataset. Unfortunately, we could 

not provide test results on BD2023 for the PUFFIN method, as the training code was not disclosed, 

and the author-provided model download link was invalid. According to Table 1, our model has 

shown improvements in terms of average AUC compared to the current best-performance models. 

Specifically, there was a 2.7% improvement in BD2023 (binary), with the AUC increasing from 0.620 

(95% CI: 0.602-0.639) to 0.637 (95% CI: 0.618-0.657). For BD2023 (𝐼𝐶!"), 1.7% improvement was 

achieved, with the AUC increased from 0.831 (95% CI: 0.795-0.865) to 0.845 (95% CI: 0.813-0.880). 

The distributions of AUC scores for each MHC-II molecules on both subsets are further depicted in 

Figure 2e, where ConBoTNet demonstrates statistically significant improvements compared to other 

models (paired t-test, P-value = 0.0095  vs. NetMHCIIpan-4.0 and P-value = 0.0467  vs. 

DeepMHCII). Additionally, Figure 2f shows that ConBoTNet outperforms the suboptimal methods 

(NetMHCIIpan-4.0 and DeepMHCII) for approximately 91.0% and 76.5% of the MHC-II molecules 

in the two BD2023 subsets, respectively. Detailed performance comparison results on the updated 

BD2024 independent test set are provided in the Supplementary Text S3 and shown in Figure S1. 

 
Figure 3. Performance evaluation of ConBoTNet and competing methods on a single model under 5-fold CV. a. 
Boxplot representing the performance of ConBoTNet, DeepSeqPanII, and DeepMHCII on 5-fold CV under the 
AUC and PCC metrics. b, c, The scatter plots of point-to-point comparisons between ConBoTNet and the current 
best competing method on 5-fold CV under the AUC and PCC metrics, respectively. 

3.4. Comparison of ConBoTNet and single model based on ensemble methods 

Various algorithms can enhance binding affinity prediction by ensembling multiple models of the 

same or similar architecture. For example, NetMHCIIpan-3.2 uses 40 neural networks for ensemble; 
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PUFFIN is a deep ensemble model composed of 20 deep residual convolutional neural networks; 

DeepMHCII is an ensemble of 20 models using a simple average method. In this section, to examine 

the possibility of performance improvement by relying solely on the model architecture itself, we 

discuss the comparison between ConBoTNet and a single model of existing ensemble algorithms. 

However, we did not include PUFFIN in the performance comparison since it did not provide neither 

implementation code nor the trained model. We compared ConBoTNet with the SOTA affinity 

prediction method, DeepMHCII, which outperformed PUFFIN (discussed in detail in DeepMHCII 

by You et al.), and DeepSeqPanII, a single-model algorithm. The performance comparison results on 

5-fold CV test for 61 MHC-II molecules are shown in Figure 3, while the overall performance 

evaluation metrics are presented in Table S2. As can be seen, ConBoTNet outperformed DeepMHCII 

on about 95.1% of MHC-II molecules with statistical significance (P-value < 0.0001). Specifically, 

ConBoTNet achieved the best average AUC of 0.837 on 5-fold CV, which was 1.9% higher than the 

SOTA method, DeepMHCII (0.821), and 13.0% higher than DeepSeqPanII (0.741), respectively. 

Similarly, the average PCC was also improved compared to DeepMHCII (increased by 4.6%, 0.657 

versus 0.628), indicating the excellent performance of the ConBoTNet model. Moreover, a more 

detailed description of the ablation studies involving the impact of bottleneck transformer modules, 

supervised contrastive learning, as well as sequence similarity on the model performance is provided 

in the Supplementary Text S4. 
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Figure 4. Visualization of ConBoTNet average attention to antigen encodings on BC2015. a. Heatmap visualization 
of each position of the antigenic peptide sequences of 51 MHC-II peptide complexes on BC2015. Each row in the 
heatmap represents a visualization of the average attention for each position of the antigen sequence of the complex, 
and each column denotes the relative position. Each row of the “true cores” column is the corresponding peptide 
sequence and the binding core is marked in blue. Meanwhile, each row of the “predicted cores” column represents 
the binding core position predicted by the ConBoTNet method. A correct prediction is colored in blue, whereas an 
incorrect one is marked red. b. Mark the high attention peptide binding sites (green) on the peptide MHC-II complex 
structure, along with the polar interactions (blue) with MHC-II (gray) and TCR (pink). 

3.5. Binding core prediction & antigen weight visualization 

The final column in Table 1 shows the ability of ConBoTNet and the compared methods to predict 

the binding core on BC2015. It suggests that both ConBoTNet and NetMHCIIpan-3.2 achieved 

remarkable prediction accuracy, correctly identifying 45 out of 51 MHC-II peptide complexes. Figure 

4a provides a detailed visualization of the results generated by ConBoTNet. Accurate predictions are 

denoted in blue, while incorrect predictions are highlighted in red. To better understand the model’s 

learning capability and potential error sources, we utilized the Captum (Kokhlikyan, et al., 2020) tool 

to analyze the attention weights assigned by the ConBoTNet model to different positions of the 
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peptide sequences. These results are visualized through a heatmap in Figure 4a. As the binding core 

consists of a continuous fragment of nine amino acids within the peptide sequence, we demarcate this 

fragment using a box encompassing nine amino acids with the highest sum of interest. The accurately 

and inaccurately predicted binding cores are marked by blue boxes and red boxes, respectively. 

Excitingly, ConBoTNet demonstrates a strong focus on the most critical aspect of peptide binding 

affinity, i.e., the binding core. For some MHC-peptide complexes, such as PDB IDs 1UVQ and 1IAO, 

the ConBoTNet model may have failed to identify the real binding cores due to the influence of the 

peptides’ flanking regions (Holland, et al., 2013). Nevertheless, this observation underscores the 

model’s capability to emphasize the peptide fragment that is most important for the affinity effect. In 

Figure 4b, we present five PDB structures depicting the peptide-binding grooves of human MHC-II 

(HLA-DR, DP, DQ) and mouse MHC-II (H-2) molecules. Amino acids with the highest attention 

weights are usually located at the MHC peptide-binding pockets and involved in the polar interactions 

between the peptide and MHC-II molecule or TCR, e.g. In the HLA-DR2b/MBP-peptide complex 

(PDB ID: 1YMM), a bulky amino acid F8 of the peptide forms hydrogen bonds with Q9 and N62 at 

the MHC-II 𝛼 chain. This also illustrates that our proposed ConBoTNet can identify binding anchors 

that interact with MHC-II or TCR. 

3.6. Sequence logo representations 

We visualized the binding motifs of MHC-II molecules, identified by ConBoTNet and DeepMHCII, 

as sequence logos using Seq2Logo v2.0 (Thomsen & Nielsen, 2012). Following the description in 

You et al. (You, et al., 2022), we initially calculated the binding scores for 100,000 random peptides 

from UniProt (Almagro Armenteros, et al., 2019) in relation to a specific MHC-II molecule. 

Subsequently, we selected the top 1% of peptides with the highest binding scores to generate the 

sequence logos under the default settings. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2024. ; https://doi.org/10.1101/2023.12.21.572942doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.21.572942
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

 
Figure 5. Sequence logo representations by ConBoTNet and DeepMHCII. Each sequence logo has nine positions 
(pockets) on the horizontal axis. At each position, the total height represents the relative information content of the 
corresponding position within the motif. Additionally, the height of each letter indicates the frequency of the 
corresponding amino acid in the position. 

Furthermore, we focused on six MHC-II molecules that demonstrated high predictive accuracy 

on the BD2023 test set and had detailed motif information in the SYFPEITHI database (Schuler, 

Nastke, & Stevanović, 2007). The binding groove of the MHC-II molecule is open at both ends, 

enabling the interaction with peptides of variable lengths. The ends of the binding pocket are called 

the major anchors (P1, P9) from the N-terminus to the C-terminus, whereas the smaller pockets 

generate auxiliary anchors (P4, P6, P7) (Ferrante, 2013). Figure 5 illustrates the sequence logos 

predicted by two advanced methods, namely ConBoTNet and DeepMHCII, for six MHC-II molecules 

with diverse anchor types including P1-P4-P6-P9, P1-P4-P7 and P1-P4-P9. 

Next, we assessed the anchor recognition capabilities of ConBoTNet and DeepMHCII. For the 

molecules DRB1*01:01, DRB1*04:05, DRB1*07:01, and DRB1*13:02, both methods could identify 
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their anchors, namely P1-P4-P6-P9. However, the distinction between pockets became less 

pronounced due to the integration of contextual information by the multi-head attention module. 

Consequently, the anchors identified by ConBoTNet were not as distinct as those provided by 

DeepMHCII. In the case of DRB1*15:01 with P1-P4-P7 anchors, only ConBoTNet accurately 

identified P7. Moreover, for DRB5*01:01 with P1-P4-P9 anchors, DeepMHCII failed to identify the 

correct P4 anchor. Furthermore, we also analyzed the anchor amino acid preferences, whose details 

are described in Supplementary Text S5. Overall, ConBoTNet achieved a more accurate predictive 

performance for predicting the anchors and amino acid preferences than the competing methods. 

 
Figure 6. Visualization of the original distribution of the testing data (one-fold) and the embedding visualization of 
the corresponding testing set under 5-fold CV. a, b, and c respectively correspond to the dimension reduction 
visualization of the original data of the 1st-fold, 2nd-fold, and 3rd-fold. d, e, and f respectively represent the 
embedding visualizations learned by the corresponding fold in the pre-training model. 

3.7. Supervised contrastive learning enhances affinity prediction 

In this section, we explore the role of supervised contrastive learning (pre-training) in improving 

affinity prediction models. For more intuitive representations, we output the normalized embeddings 

through the pre-trained model under 5-fold CV. Next, we use UMAP tool (Becht, et al., 2019), a 

general-purpose manifold learning and dimensionality reduction algorithm, to visualize these 
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embeddings. Figure 6 and Figure S2 show the visualization of the original distribution of the testing 

data (one-fold) and the embedding visualization of the corresponding testing set under 5-fold CV. 

Leveraging the labeled data, the supervised contrastive loss encourages the network to pull 

normalized embeddings from the same class closer, while pushing embeddings from different classes 

apart. In the pre-training data processing, we hard-divided the data into ten classes according to the 

affinity value, following Figure 1e. Interestingly, the model via supervised contrastive learning (pre-

trained stage) can learn a gradient “curve” that varies by affinity value. The robust base model 

established a solid foundation for the subsequent fine-tuning phase. In addition, the base model can 

be used to fine-tune MHC-II molecular data with fewer data, enhancing the affinity prediction 

accuracy for molecules with smaller samples. It also demonstrates why fine-tuning the pre-trained 

model for only 1-2 epochs can produce excellent prediction accuracy. 

4. Conclusion 

In this study, we have designed and developed ConBoTNet, a novel deep-learning algorithm for 

predicting MHC-II peptide binding affinity. The bottleneck transformer module successfully captured 

the binding core and precise anchor information of peptide MHC-II from multi-source interaction 

features (including embedding and one-hot encoding), and then learns a robust feature representation 

based on the similarities and differences between the interaction features through supervised 

contrastive learning for high-precision affinity prediction. 

ConBoTNet demonstrated exceptional performance across multiple benchmark datasets, 

surpassing competing methods in extensive tests. Furthermore, ConBoTNet identified the binding 

cores as well as important anchors more accurately than others. In terms of model interpretability, we 

used the Captum algorithm to explain the influence of binding core and peptides flanking regions on 

affinity prediction by analyzing the attention weights on peptide sequences; and visually 

demonstrated how supervised contrastive learning could enhance affinity prediction. All these results 

highlight the utility and significance of ConBoTNet for relevant biomedical discovery and 

interpretability. One limitation of our study is that we focused on the peptide-MHC binding prediction 

rather than T cell epitope identification problem. However, peptide-MHC binding is a prerequisite for 

T cell immunogenicity, for which multiple studies have shown that MHC peptide binding strength is 
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correlated strongly with peptide immunogenicity (Kim, Bang, Noh, & Choi, 2023). This study 

provides a useful groundwork for our better understanding of the interaction conformation between 

T-cell receptors and epitopes. We plan to integrate multivariate prior biological and biomedical 

knowledge and design highly interpretable model architectures to develop advanced deep learning 

methods for predicting of T cell receptor-epitope binding specificity (Lu, et al., 2021; Peng, et al., 

2023; Racle, et al., 2023) in future work. 
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Data and Software Availability 

The data and source code for this work are available on GitHub at 

https://github.com/shenlongchen/conbotnet. 

Supporting Information Available 

The Supporting Information is available in the Supplementary file about more details of results. Text 

S1: Performance evaluation metrics; Text S2, Table S3: Model implementation and hyperparameter 

settings; Text S3, Figure S1: Performance on BD2024 dataset; Text S4, Table S1-S2, Figure S3: 

Ablation experiment; Text S5: Analysis of anchor amino acid preferences; Figure S2: Visualization. 
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